Effects of medical cannabis use on physical and psychiatric symptoms across the day among older adults

pubmed logo

“Introduction: Older adults are increasingly using medical cannabis (MC). It is unclear if therapeutic effects increase problematic use patterns. The current study addresses this issue by examining symptom trajectories across the day and using trajectories to predict problematic use.

Methods: One-hundred six older adults (age range 55-74) who endorsed medical conditions approved for treatment using MC were recruited online. Participants received six text messages/day to assess momentary symptoms for 15 days.

Results: Participants provided 5,156 momentary assessments across 1,106 use days. Symptom trajectories were examined across the day. There was a decline in all symptoms following use. Negative affect, pain, and nausea evinced momentary negative reinforcement associations with cannabis intoxication. Momentary negative reinforcement was associated with adverse cannabis outcomes. Declines in post-use trauma symptoms and momentary negative reinforcement effects for negative affect were both associated with cannabis use disorder symptoms.

Discussion: These data suggest that MC may be effective in reducing common symptom clusters. However, the negative reinforcing effect (i.e., the link between use and symptom relief at the event level) may complicate the therapeutic nature (i.e., symptom reduction). Identifying interventions to maximize benefits while minimizing costs may increase the efficacy and safety of MC in older adults.”

https://pubmed.ncbi.nlm.nih.gov/38924900/

“Medical cannabis (MC) use is increasing in older adults. MC was associated with decreases in pain, negative affect, trauma, and nausea.”

https://www.sciencedirect.com/science/article/abs/pii/S0165178124003408?via%3Dihub


The Therapeutic Potential of Hemp Seed Oil in D-Galactose-Induced Aging Rat Model Was Determined through the Combined Assessment of 1H NMR Metabolomics and 16S rRNA Gene Sequencing

pubmed logo

“Aging is an irreversible process of natural degradation of bodily function. The increase in the aging population, as well as the rise in the incidence of aging-related diseases, poses one of the most pressing global challenges.

Hemp seed oil, extracted from the seeds of hemp (Cannabis sativa L.), possesses significant nutritional and biological properties attributed to its unique composition of polyunsaturated fatty acids and various antioxidant compounds. However, there is limited knowledge regarding the anti-aging mechanism of hemp seed oil.

This study aimed to evaluate the beneficial effects and potential mechanisms of hemp seed oil in a D-galactose (D-gal)-induced aging rat model through a combined analysis of metabolomics and 16S rRNA gene sequencing.

Using nuclear magnetic resonance (NMR)-based metabolomics, significant alterations in serum and urine metabolic phenotypes were observed between the D-gal-induced aging rat model and the healthy control group. Eight and thirteen differentially expressed metabolites related to aging were identified in serum and urine, respectively.

Treatment with hemp seed oil significantly restored four and ten potential biomarkers in serum and urine, respectively. The proposed pathways primarily included energy metabolism, amino acid metabolism, one-carbon metabolism, and lipid metabolism. Furthermore, 16S rRNA gene sequencing analysis revealed significant changes in the gut microbiota of aged rats. Compared to the model group, the hemp seed oil group exhibited significant alterations in the abundance of 21 bacterial taxa at the genus level.

The results indicated that hemp seed oil suppressed the prevalence of pathogenic bacterial genera such as StreptococcusRothia, and Parabacteroides. Additionally, it facilitated the proliferation of the genera Lachnospirace_NK4B4_group and Lachnospirace_UCG_001, while also enhancing the relative abundance of the genus Butyricoccus; a producer of short-chain fatty acids (SCFAs).

These findings provided new insights into the pathogenesis of aging and further supported the potential utility of hemp seed oil as an anti-aging therapeutic agent.”

https://pubmed.ncbi.nlm.nih.gov/38921439/

“In conclusion, this study demonstrated that the administration of hemp seed oil resulted in a reversal of 4 and 10 differential metabolites related to aging in the serum and urine of the model rats, respectively. These findings suggested that hemp seed oil exerted anti-aging effects by partially restoring the balance of disrupted metabolic pathways, including energy metabolism, amino acid metabolism, one-carbon metabolism, and lipid metabolism. These results provided novel insights into the pathogenesis of aging and further supported the potential therapeutic use of hemp seed oil as an anti-aging intervention.”

https://www.mdpi.com/2218-1989/14/6/304

In vivo and in silico studies of the effects of oil extracted from Cannabis sativa L. seeds on healing of burned skin wounds in rats

pubmed logo

“Introduction: This study investigates the potential effects of cannabis seed oil (CSO) on the wound healing process. The aim was to assess the efficacy of CSO in treating skin wounds using an animal model and to explore its anti-inflammatory properties through in silico analysis.

Methods: Eighteen male albino Wistar rats, weighing between 200 and 250 g, were divided into three groups: an untreated negative control group, a group treated with the reference drug silver sulfadiazine (SSD) (0.01 g/mL), and a group treated topically with CSO (0.962 g/mL). The initial wound diameter for all groups was 1 cm. In silico studies were conducted using Maestro 11.5 to evaluate the anti-inflammatory effects of phytoconstituents against cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2).

Results: CSO and SSD treatments led to a significant reduction (p <0.05) in the size of burned skin wounds by day 5, with contraction rates of 53.95% and 45.94%, respectively, compared to the untreated negative control group. By day 15, wounds treated with CSO and SSD had nearly healed, showing contraction rates of 98.8% and 98.15%, respectively. By day 20, the wounds treated with CSO had fully healed (100%), while those treated with SSD had almost completely healed, with a contraction rate of 98.97%. Histological examination revealed granulated tissue, neo-blood vessels, fibroblasts, and collagen fibers in wounds treated with CSO. In silico studies identified arachidic acid, γ-linolenic acid, and linolenic acid as potent inhibitors of COX-1 and COX-2. Serum biochemical parameters indicated no significant changes (p > 0.05) in liver and kidney function in rats treated with CSO, whereas a significant increase (p < 0.01) in ALAT level was observed in rats treated with SSD.

Discussion: The findings demonstrate that CSO has a promising effect on wound healing. The CSO treatment resulted in significant wound contraction and histological improvements, with no adverse effects on liver and kidney function.However, the study’s limitations, including the small sample size and the need for detailed elucidation of CSO’s mechanism of action, suggest that further research is necessary. Future studies should focus on exploring the molecular pathways and signaling processes involved in CSO’s pharmacological effects.”

https://pubmed.ncbi.nlm.nih.gov/38919274/

“The results of the present study demonstrated the efficacy of CSO in the healing of burn wounds in rats, indicating it might represent a natural compound that can be used to treat injuries to the skin in humans and animals. CSO can also be an excellent drug in the cosmetic field because of its potential protection against skin problems via its efficacy in cicatrization. The results presented here provide the basis for future clinical studies demonstrating the safety and efficacy of CSO as a topical agent to facilitate the healing of wounds in humans. Finally, these findings underscore the safety profile of CSO as a natural product compared to the reference control group. These robust data further support the promising potential of CSO as a safe and viable option for dermal applications, with no adverse effects observed on liver and kidney functions.”

https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2024.1381527/full

Revitalizing polycystic ovary syndrome: The therapeutic impact of low-dose ∆ tetrahydrocannabinol-9 through reduction of oxidative stress and modulation of macrophage polarization

pubmed logo

“Objectives: Polycystic ovary syndrome (PCOS) is a complex metabolic and endocrine disorder associated with chronic inflammation. However, the effect of ∆ tetrahydrocannabinol-9 (THC) on PCOS has not been evaluated. Therefore, this study aimed to investigate the immunomodulatory effects of THC in an animal model of PCOS.

Materials and methods: Twenty female Sprague-Dawley rats, aged 4 weeks, were divided into four groups. The control group received a normal diet, the sham group received a vehicle (carboxymethyl cellulose), the PCOS group received a high-fat diet (HFD) for 16 weeks followed by letrozole for 4 weeks, and the THC group received an HFD for 16 weeks followed by letrozole+THC (0.02 mg/kg) for 4 weeks.

Results: The PCOS animals exhibited significantly higher levels of testosterone, insulin, triglycerides, and total cholesterol, along with elevated inflammatory and oxidative stress markers compared to the control group. Flow cytometry and real-time PCR analysis revealed an increase in M1 macrophage markers and a decrease in M2 macrophage markers compared to the control group. However, the administration of a low dose of THC mitigated these disturbances.

Conclusion: Low-dose THC improved inflammatory responses and shifted the balance of M1/M2 macrophage markers towards M2 macrophages in the animal model of PCOS.”

https://pubmed.ncbi.nlm.nih.gov/38911246/

Hempseed protein-derived short- and medium-chain peptides and their multifunctional properties

pubmed logo

“Nowadays, the growing knowledge about the high nutritional value and potential functionality of hempseeds, the edible fruits of the Cannabis sativa L. plant, has sparked a surge in interest in exploring the worthwhile attributes of hempseed proteins and peptides. This trend aligns with the increasing popularity of hemp-based food, assuming a vital role in the global food chain. This chapter targets the nutritional and chemical composition of hempseed in terms of short- and medium-chain bioactive peptides. The analytical approaches for their characterization and multifunctional properties are summarized in detail. Moreover, the processing, functionality, and application of various hempseed protein products are discussed. In the final part of the chapter-for evaluating their propensity to be transported by intestinal cells-the transepithelial transport of peptides within hempseed protein hydrolysate is highlighted.”

https://pubmed.ncbi.nlm.nih.gov/38906589/

“Cannabis sativa L. is an annual, dioecious plant within the Cannabinaceae family. It has a well-documented history of serving as a source of both food and medicine over the ages.”

https://www.sciencedirect.com/science/article/abs/pii/S1043452624000020?via%3Dihub

Advancement of Research Progress on Synthesis Mechanism of Cannabidiol (CBD)

pubmed logo

“Cannabis sativa L. is a multipurpose crop with high value for food, textiles, and other industries. Its secondary metabolites, including cannabidiol (CBD), have potential for broad application in medicine. With the CBD market expanding, traditional production may not be sufficient. Here we review the potential for the production of CBD using biotechnology. We describe the chemical and biological synthesis of cannabinoids, the associated enzymes, and the application of metabolic engineering, synthetic biology, and heterologous expression to increasing production of CBD.”

https://pubmed.ncbi.nlm.nih.gov/38900848/

https://pubs.acs.org/doi/10.1021/acssynbio.4c00239

Minor Cannabinoids as Inhibitors of Skin Inflammation: Chemical Synthesis and Biological Evaluation

pubmed logo

“Despite millennia of therapeutic plant use, deliberate exploitation of Cannabis‘s diverse biomedical potential has only recently gained attention. Bioactivity studies focus mainly on cannabidiol (CBD) and tetrahydrocannabinol (THC) with limited information about the broader cannabinome’s “minor phytocannabinoids”. In this context, our research targeted the synthesis of minor cannabinoids containing a lateral chain with 3 or 4 carbon atoms, focusing on cannabigerol (CBG) and cannabichromene (CBC) analogues. Using known and innovative strategies, we achieved the synthesis of 11 C3 and C4 analogues, five of which were inhibitors of skin inflammation, with the CBG-C4 ester derivative emerging as the most potent compound.”

https://pubmed.ncbi.nlm.nih.gov/38889235/

https://pubs.acs.org/doi/10.1021/acs.jnatprod.4c00212

Prescribed Medical Cannabis Use Among Older Individuals: Patient Characteristics and Improvements in Well-Being: Findings from T21

pubmed logo

“Background: Previous research has suggested that the use of cannabis-based medicinal products is increasing most rapidly among older aged individuals (65+ years). Despite this, little is known about the characteristics of older people using cannabis-based medicinal products and their effectiveness.

Objectives: We aimed to document the characteristics, outcomes and prescribing patterns of individuals aged 65+ years receiving prescribed cannabis compared to younger individuals receiving prescribed cannabis.

Methods: Data from T21, an observational study of patients seeking treatment with medicinal cannabinoids, including self-report ratings of quality of life (assessed via the EQ-5D-5L), general health (assessed via the visual analogue scale of the EQ-5D-5L), mood (assessed via the Patient Health Questionnaire-9) and sleep (assessed using four items derived from the Pittsburgh Sleep Quality Index) were available at treatment entry [n = 4228; 198 (4.7%) 65+ years] and at a 3-month follow-up [n = 2455; 98 (4.2%) = 65+ years].

Results: Relative to younger individuals, those aged over 64 years were more likely to be female (52.5% vs 47.0%; p < 0.001), more likely to report pain as their primary condition (76.3% vs 45.6%; p < 0.001) and less likely to report current daily use (20.2% vs 60.3%, p < 0.001). They received fewer cannabis-based medicinal products (mean = 1.4 vs 2.1; F(1,2199) = 32.3, p < 0.001) and were more likely to receive a prescription for a cannabidiol dominant oil (17.5% vs 5.7%; p < 0.001) and less likely to receive a prescription for delta-9-tetrahydrocannabinol dominant flower (32.5% vs 75.2%; p < 0.001). There were significant improvements across all measures of well-being (p < 0.001), but the extent of improvements in sleep were more marked in younger individuals (p < 0.001).

Conclusions: There are important differences between individuals aged 65+ years and younger individuals receiving cannabis-based medicinal products. Older aged individuals experience considerable improvement in health and well-being when prescribed cannabis-based medicinal products.”

https://pubmed.ncbi.nlm.nih.gov/38880841/

https://link.springer.com/article/10.1007/s40266-024-01123-y

Vasoactive and Antifibrotic Properties of Cannabinoids and Applications to Vasospastic/Vaso-Occlusive Disorders: A Systematic Review

pubmed logo

“Background: Management of vasospastic and vaso-occlusive disorders is a complex challenge, with current treatments showing varied success. Cannabinoids have demonstrated both vasodilatory and antifibrotic properties, which present potential mechanisms for therapeutic relief. No existing review examines these effects in peripheral circulation in relation to vasospastic and vaso-occlusive disorders. This study aims to investigate vasodilatory and antifibrotic properties of cannabinoids in peripheral vasculature for application in vasospastic and vaso-occlusive disorders affecting the hand.

Methods: A systematic search was conducted by 2 independent reviewers across PubMed, Cochrane, Ovid MEDLINE, and CINAHL to identify studies in accordance with the determined inclusion/exclusion criteria. Information regarding study design, medication, dosage, and hemodynamic or antifibrotic effects were extracted. Descriptive statistics were used to summarize study findings as appropriate.

Results: A total of 584 articles were identified, and 32 were selected for inclusion. Studies were grouped by effect type: hemodynamic (n = 17, 53%) and antifibrotic (n = 15, 47%). Vasodilatory effects including reduced perfusion pressure, increased functional capillary density, inhibition of vessel contraction, and increased blood flow were reported in 82% of studies. Antifibrotic effects including reduced dermal thickening, reduced collagen synthesis, and reduced fibroblast migration were reported in 100% of studies.

Conclusion: Overall, cannabinoids were found to have vasodilatory and antifibrotic effects on peripheral circulation via both endothelium-dependent and independent mechanisms. Our review suggests the applicability of cannabis-based medicines for vasospastic and vaso-occlusive disorders affecting the hand (eg, Raynaud disease, Buerger disease). Future research should aim to assess the effectiveness of cannabis-based medicines for these conditions.”

https://pubmed.ncbi.nlm.nih.gov/38857012/

https://journals.lww.com/annalsplasticsurgery/abstract/2024/06004/vasoactive_and_antifibrotic_properties_of.19.aspx

Lysosomal cholesterol accumulation in aged astrocytes impairs cholesterol delivery to neurons and can be rescued by cannabinoids

pubmed logo

“Cholesterol is crucial for the proper functioning of eukaryotic cells, especially neurons, which rely on cholesterol to maintain their complex structure and facilitate synaptic transmission. However, brain cells are isolated from peripheral cholesterol by the blood-brain barrier and mature neurons primarily uptake the cholesterol synthesized by astrocytes for proper function.

This study aimed to investigate the effect of aging on cholesterol trafficking in astrocytes and its delivery to neurons. We found that aged astrocytes accumulated high levels of cholesterol in the lysosomal compartment, and this cholesterol buildup can be attributed to the simultaneous occurrence of two events: decreased levels of the ABCA1 transporter, which impairs ApoE-cholesterol export from astrocytes, and reduced expression of NPC1, which hinders cholesterol release from lysosomes. We show that these two events are accompanied by increased microR-33 in aged astrocytes, which targets ABCA1 and NPC1. In addition, we demonstrate that the microR-33 increase is triggered by oxidative stress, one of the hallmarks of aging. By coculture experiments, we show that cholesterol accumulation in astrocytes impairs the cholesterol delivery from astrocytes to neurons.

Remarkably, we found that this altered transport of cholesterol could be alleviated through treatment with endocannabinoids as well as cannabidiol or CBD. Finally, according to data demonstrating that aged astrocytes develop an A1 phenotype, we found that cholesterol buildup is also observed in reactive C3+ astrocytes.

Given that reduced neuronal cholesterol affects synaptic plasticity, the ability of cannabinoids to restore cholesterol transport from aged astrocytes to neurons holds significant implications in aging and inflammation.”

https://pubmed.ncbi.nlm.nih.gov/38856177/

https://onlinelibrary.wiley.com/doi/10.1002/glia.24580