Evaluation of two different Cannabis sativa L. extracts as antioxidant and neuroprotective agents

Frontiers announces first journal acquisition: Oncology Reviews – STM  Publishing News

“Cannabis sativa L. is a plant that contains numerous chemically active compounds including cannabinoids such as trans-Δ-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and flavone derivatives, such as luteolin-7-O-glucuronide and apigenin glucuronide. In particular, the polar fraction of hemp including many phenolic compounds has been overlooked when compared with the more lipophilic fraction containing cannabinoids. Therefore, the aim of this study was to assess two extracts of industrial hemp (C. sativa) of different polarity (aqueous and hexane) by evaluating their antioxidant profile and their neuroprotective potential on pharmacological targets in the central nervous system (CNS). Several assays on in vitro antioxidant capacity (DPPH, superoxide radical, FRAP, ORAC), as well as inhibition of physiological enzymes such as acetylcholinesterase (AChE) and monoaminooxidase A (MAO-A) were carried out in order to find out how these extracts may be helpful to prevent neurodegenerative disorders. Neuro-2a cell line was selected to test the cytotoxic and neuroprotective potential of these extracts. Both extracts showed striking antioxidant capacity in the FRAP and ORAC assays, particularly the hexane extract, and interesting results for the DPPH and superoxide radical uptake assays, with the aqueous extract standing out especially in the latter. In enzyme inhibition assays, the aqueous extract showed AChE and MAO-A inhibitory activity, while the hexane extract only reached IC50 value for AChE inhibitory bioassay. Neuro-2a assays demonstrated that polyphenolic extract was not cytotoxic and exhibited cytoprotective properties against hydrogen peroxide and antioxidant response decreasing reactive oxygen species (ROS) production. These extracts could be a source of compounds with potential benefit on human health, especially related to neurodegenerative disorders.”

https://pubmed.ncbi.nlm.nih.gov/36176449/

“In conclusion, this study provided new insights into the biological activities of two different extracts of C. sativa. It was revealed that these extracts constitute a valuable and interesting natural source of bioactive molecules with great antioxidant properties, potentially capable of preventing neurodegenerative diseases.”

https://www.frontiersin.org/articles/10.3389/fphar.2022.1009868/full

Endocannabinoid-Binding Receptors as Drug Targets

Book cover

“Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century.

In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family.

Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies.

This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.”

https://pubmed.ncbi.nlm.nih.gov/36152178/

https://link.springer.com/protocol/10.1007/978-1-0716-2728-0_6

Endocannabinoid Metabolism and Transport as Drug Targets

Book cover

“The wide distribution of the endocannabinoid system (ECS) throughout the body and its pivotal pathophysiological role offer promising opportunities for the development of novel therapeutic drugs for treating several diseases. However, the need for strategies to circumvent the unwanted psychotropic and immunosuppressive effects associated with cannabinoid receptor agonism/antagonism has led to considerable research in the field of molecular alternatives, other than type-1 and type-2 (CB1/2) receptors, as therapeutic targets to indirectly manipulate this pro-homeostatic system. In this context, the use of selective inhibitors of proteins involved in endocannabinoid (eCB) transport and metabolism allows for an increase or decrease of the levels of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the sites where these major eCBs are indeed needed. This chapter will briefly review some preclinical and clinical evidence for the therapeutic potential of ECS pharmacological manipulation.”

https://pubmed.ncbi.nlm.nih.gov/36152188/

https://link.springer.com/protocol/10.1007/978-1-0716-2728-0_16


Comparison of the in vitro Anti-Inflammatory Effect of Cannabidiol to Dexamethasone

“Background: Cannabidiol (CBD) is a non-psychoactive phytocannabinoid constituent of Cannabis sativa with pain-relieving and anti-inflammatory properties. With the emphasis on natural ingredients in cosmetics, CBD has become a new cosmetic ingredient due to its ability to alleviate inflammation. However, in-depth studies that directly compare the effective mechanism and the therapeutic potential of CBD are still needed.

Purpose: The aim of the present study was to investigate the anti-inflammatory effect of CBD in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and compare it to dexamethasone (DEX).

Methods: RAW264.7 macrophages in the logarithmic growth phase were incubated in the presence or absence of LPS. After that, the production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured. A luciferase reporter assay for nuclear factor kappa B (NF-κB) was performed, and the phosphorylation levels of the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways were measured.

Results: The present study indicated that CBD had a similar anti-inflammatory effect to DEX by attenuating the LPS-induced production of NO, IL-6, and TNF-α. However, only CBD attenuated JNK phosphorylation levels, and only DEX attenuated IKK phosphorylation levels.

Conclusion: These results suggested that CBD and DEX exhibit similar anti-inflammatory effects on LPS-induced RAW264.7 macrophages mainly through suppressing the MAPK and NF-κB signaling pathways, but with different intracellular mechanisms. These findings suggested that CBD may be considered a natural anti-inflammatory agent for protecting skin from immune disorders.”

https://pubmed.ncbi.nlm.nih.gov/36159203/

“As alternative and complementary therapies grow in dermatology, plant extracts such as CBD have garnered significant attention in dermatology. The present study provided new insight of CBD against LPS-induced inflammation. Our results suggested that CBD and DEX suppress the LPS-induced activation of the MAPK and NF-κB signaling pathways in RAW264.7 cells through different intracellular components, indicating that the anti-inflammatory biological mechanism of CBD is different from other immuno-suppressants. Because macrophages exert various pro-inflammatory functions through multiple intracellular pathways, further in vivo and in vitro studies are necessary to enrich the theoretical knowledge of CBD and promote its future clinical application.”

https://www.dovepress.com/comparison-of-the-in-vitro-anti-inflammatory-effect-of-cannabidiol-to–peer-reviewed-fulltext-article-CCID

Dynamic Changes in the Endocannabinoid System during the Aging Process: Focus on the Middle-Age Crisis

ijms-logo

“Endocannabinoid (eCB) signaling is markedly decreased in the hippocampus (Hip) of aged mice, and the genetic deletion of the cannabinoid receptor type 1 (CB1) leads to an early onset of cognitive decline and age-related histological changes in the brain. Thus, it is hypothesized that cognitive aging is modulated by eCB signaling through CB1.

In the present study, we detailed the changes in the eCB system during the aging process using different complementary techniques in mouse brains of five different age groups, ranging from adolescence to old age.

Our findings indicate that the eCB system is most strongly affected in middle-aged mice (between 9 and 12 months of age) in a brain region-specific manner. We show that 2-arachidonoylglycerol (2-AG) was prominently decreased in the Hip and moderately in caudate putamen (CPu), whereas anandamide (AEA) was decreased in both CPu and medial prefrontal cortex along with cingulate cortex (mPFC+Cg), starting from 6 months until 12 months. Consistent with the changes in 2-AG, the 2-AG synthesizing enzyme diacylglycerol lipase α (DAGLα) was also prominently decreased across the sub-regions of the Hip.

Interestingly, we found a transient increase in CB1 immunoreactivity across the sub-regions of the Hip at 9 months, a plausible compensation for reduced 2-AG, which ultimately decreased strongly at 12 months. Furthermore, quantitative autoradiography of CB1 revealed that [3H]CP55940 binding markedly increased in the Hip at 9 months. However, unlike the protein levels, CB1 binding density did not drop strongly at 12 months and at old age. Furthermore, [3H]CP55940 binding was significantly increased in the lateral entorhinal cortex (LEnt), starting from the middle age until the old age.

Altogether, our findings clearly indicate a middle-age crisis in the eCB system, which could be a potential time window for therapeutic interventions to abrogate the course of cognitive aging.”

https://pubmed.ncbi.nlm.nih.gov/36142165/

“In conclusion, our observations indicate that the eCB system is most affected during the middle age in a brain region-specific manner. Taken together, the middle-age crisis in the eCB signaling corresponds well with the onset of neuroinflammatory glial activity and cognitive deficits in mice. We now hypothesize that late middle-age is the time period when a therapy based on the activation of the cannabinoid system has the highest efficacy to prevent cognitive aging and pathologies related to brain aging.”

https://www.mdpi.com/1422-0067/23/18/10254/htm

Antibacterial Effects of Phytocannabinoids

life-logo

“Antibiotics are used as the first line of treatment for bacterial infections. However, antibiotic resistance poses a significant threat to the future of antibiotics, resulting in increased medical costs, hospital stays, and mortality. New resistance mechanisms are emerging and spreading globally, impeding the success of antibiotics in treating common infectious diseases.

Recently, phytocannabinoids have been shown to possess antimicrobial activity on both Gram-negative and Gram-positive bacteria. The therapeutic use of phytocannabinoids presents a unique mechanism of action to overcome existing antibiotic resistance.

Future research must be carried out on phytocannabinoids as potential therapeutic agents used as novel treatments against resistant strains of microbes.”

https://pubmed.ncbi.nlm.nih.gov/36143430/

“Current antibiotic treatments have limited efficacy against multidrug-resistant bacteria, causing a significant challenge for prescribing physicians. A lack of effective therapies or new antibiotics requires the development of alternative antimicrobial therapies. Research has shown phytocannabinoids and CB2 agonists to exhibit antibiotic activity against a variety of Gram-positive and Gram-negative bacteria. Although their antimicrobial activity is limited in terms of Gram-negative bacteria, they offer therapeutic potential when administered as an adjunct treatment with an outer membrane perturbing molecule to facilitate the permeation of compounds that are effective on Gram-positive bacteria. Research has also shown synergy supporting the potential for combination therapy both in vivo and in vitro. Furthermore, CB2 agonists, such as β-caryophyllene, are widely used in industry as food additives and traditional medicine, and many are FDA approved and generally recognised as safe (GRAS), making them a good option for a novel therapeutic. The studies presented in this review suggest an attractive potential for cannabinoid-based antibacterial treatments.”

https://www.mdpi.com/2075-1729/12/9/1394/htm

Extraction, Physicochemical Properties, Anti-Aging, and Antioxidant Activities of Polysaccharides from Industrial Hemp Residues

molecules-logo

“A large amount of hemp polysaccharides remain in industrial hemp residues (IHR) after cannabidiol extraction, resulting in the waste of resources. Therefore, the systematic study of hemp polysaccharides is beneficial to the development of IHR in the future. In this study, the extraction of industrial hemp residues polysaccharide (IHRPs) was optimized by single-factor experiment and orthogonal experimental design. The optimum heating extraction conditions were extraction temperature 98 °C, solid-liquid ratio 1:10, extraction time 1 h, number of successive extractions 2, and pH at 4. The extraction ratio and the polysaccharide content were 20.12 ± 0.55% and 12.35 ± 0.26% at the conditions, respectively. Besides, the best alcohol precipitation conditions were pumping with 2 L/h, stirring continuously, and ice-water bath for 4 h. The crude IHRPs was further purified by column chromatography and the polysaccharide/protein contents of purified IHRPs were 34.44% and 1.61%. IHRPs was mainly made up of ten monosaccharides and some non-sugar components including organic acids, flavonoids, steroids, and glycoside. The FT-IR demonstrated the polysaccharide skeleton of IHRPs. Moreover, the DPPH and ABTS scavenging rate of IHRPs were 76.00% and 99.05% at the concentrations of 1 mg/mL. IHRPs could promote the epidermal cells proliferation and healing of cell scratches. Meanwhile, IHRPs could promoted the expression of anti-aging-related genes. Overall, IHRPs could be a desirable natural source of antioxidants and anti-aging products in many aspects.”

https://pubmed.ncbi.nlm.nih.gov/36144481/

https://www.mdpi.com/1420-3049/27/18/5746

Promising Nanocarriers to Enhance Solubility and Bioavailability of Cannabidiol for a Plethora of Therapeutic Opportunities

molecules-logo

“In recent years, the interest in cannabidiol (CBD) has increased because of the lack of psychoactive properties. However, CBD has low solubility and bioavailability, variable pharmacokinetics profiles, poor stability, and a pronounced presystemic metabolism. CBD nanoformulations include nanosuspensions, polymeric micelles and nanoparticles, hybrid nanoparticles jelled in cross-linked chitosan, and numerous nanosized lipid formulations, including nanostructured lipid carriers, vesicles, SNEEDS, nanoemulsions, and microemulsions. Nanoformulations have resulted in high CBD solubility, encapsulation efficiency, and stability, and sustained CBD release. Some studies assessed the increased Cmax and AUC and decreased Tmax. A rational evaluation of the studies reported in this review evidences how some of them are very preliminary and should be completed before performing clinical trials. Almost all the developed nanoparticles have simple architectures, are well-known and safe nanocarriers, or are even simple nanosuspensions. In addition, the conventional routes of administration are generally investigated. As a consequence, many of these studies are almost ready for forthcoming clinical translations. Some of the developed nanosystems are very promising for a plethora of therapeutic opportunities because of the versatility in terms of the release, the crossing of physiological barriers, and the number of possible routes of administration.”

https://pubmed.ncbi.nlm.nih.gov/36144803/

https://www.mdpi.com/1420-3049/27/18/6070

Preoperative cannabis use does not increase opioid utilization following primary total hip arthroplasty in a propensity matched analysis

SpringerLink

“Purpose: The recreational and medical use of cannabis is being legalized worldwide. Its use has been linked to an increased risk of developing opioid use disorders. As opioids continue to be prescribed after total hip arthroplasty (THA), the influence that preoperative cannabis use may have on postoperative opioid consumption remains unknown. The purpose of this study was to assess the relationship between preoperative cannabis use and opioid utilization following primary THA.

Methods: We identified all patients over the age of 18 who underwent unilateral, primary THA for a diagnosis of osteoarthritis at a single institution from February 2019 to April 2021. Our cohort was grouped into current cannabis users (within 6 months of surgery) and those who reported never using cannabis. One hundred and fifty-six current users were propensity score matched 1:6 with 936 never users based on age, sex, BMI, history of chronic pain, smoking status, history of anxiety/depression, ASA classification and type of anesthesia. Outcomes included inpatient and postdischarge opioid use in morphine milligram equivalents.

Results: Total inpatient opioid utilization, opioids refilled, and total opioids used within 90 postoperative days were similar between the groups.

Conclusion: In propensity score matched analyses, preoperative cannabis use was not independently associated with an increase in inpatient or outpatient, 90-days opioid consumption following elective THA.”

https://pubmed.ncbi.nlm.nih.gov/36129515/

https://link.springer.com/article/10.1007/s00402-022-04619-7

Does cannabis use predict aggressive or violent behavior in psychiatric populations? A systematic review

Publication Cover

“Background: Despite an increase in information evaluating the therapeutic and adverse effects of cannabinoids, many potentially important clinical correlates, including violence or aggression, have not been adequately investigated.Objectives: In this systematic review, we examine the published evidence for the relationship between cannabis and aggression or violence in individuals with psychiatric disorders.Methods: Following PRISMA guidelines, articles in English were searched on PubMed, Google Scholar, MEDLINE, and PsycINFO from database inception to January 2022. Data for aggression and violence in people with psychiatric diagnoses were identified during the searches.Results: Of 391 papers identified within the initial search, 15 studies met inclusion criteria. Cross-sectional associations between cannabis use and aggression or violence in samples with post-traumatic stress disorder (PTSD) were found. Moreover, a longitudinal association between cannabis use and violence and aggression was observed in psychotic-spectrum disorders. However, the presence of uncontrolled confounding factors in the majority of included studies precludes any causal conclusions.Conclusion: Although cannabis use is associated with aggression or violence in individuals with PTSD or psychotic-spectrum disorders, causal conclusions cannot be drawn due to methodological limitations observed in the current literature. Well-controlled, longitudinal studies are needed to ascertain whether cannabis plays a causal role on subsequent violence or aggression in mental health disorders.”

https://pubmed.ncbi.nlm.nih.gov/36137273/

https://www.tandfonline.com/doi/abs/10.1080/00952990.2022.2118060?journalCode=iada20