A Retrospective Cohort Study That Examined the Impact of Cannabis Consumption on Long-Term Kidney Outcomes

View details for Cannabis and Cannabinoid Research cover image

“Background: Cannabis consumption for recreational and medical use is increasing worldwide. However, the long-term effects on kidney health and disease are largely unknown. 

Materials and Methods: Post hoc analysis of cannabis use as a risk factor for kidney disease was performed using data from the Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury (ASSESS-AKI) study that enrolled hospitalized adults with and without acute kidney injury from four U.S. centers during 2009-2015. Associations between self-reported cannabis consumption and the categorical and continuous outcomes were determined using multivariable Cox regression and linear mixed models, respectively. 

Results: Over a mean follow-up of 4.5±1.8 years, 94 participants without chronic kidney disease (CKD) (estimated glomerular filtration rate [eGFR] >60 mL/min/1.73 m2) who consumed cannabis had similar rates of annual eGFR decline versus 889 nonconsumers (mean difference=-0.02 mL/min/1.73 m2/year, p=0.9) and incident CKD (≥25% reduction in eGFR compared with the 3-month post-hospitalization measured eGFR and achieving CKD stage 3 or higher) (adjusted hazard ratio [aHR]=1.2; 95% confidence interval [CI]=0.7-2.0). Nineteen participants with CKD (eGFR <60 mL/min/1.73 m2) who consumed cannabis had more rapid eGFR decline versus 597 nonconsumers (mean difference=-1.3 mL/min/1.73 m2/year; p=0.02) that was not independently associated with an increased risk of CKD progression (≥50% reduction in eGFR compared with the 3-month post-hospitalization eGFR, reaching CKD stage 5, or receiving kidney replacement therapy) (aHR=1.6; 95% CI=0.7-3.5). Cannabis consumption was not associated with the rate of change in urine albumin to creatinine ratio (UACR) over time among those with (p=0.7) or without CKD (p=0.4). 

Conclusions: Cannabis consumption did not adversely affect the kidney function of participants without CKD but was associated with a faster annual eGFR decline among participants with CKD. Cannabis consumption was not associated with changes in UACR over time, incident CKD, or progressive CKD regardless of baseline kidney function. Additional research is needed to investigate the kidney endocannabinoid system and the impact of cannabis use on kidney disease outcomes.”

https://pubmed.ncbi.nlm.nih.gov/36791309/

https://www.liebertpub.com/doi/10.1089/can.2022.0141

Safety Assessment and Redox Status in Rats after Chronic Exposure to Cannabidiol and Cannabigerol

Toxicology

“Cannabidiol (CBD) and cannabigerol (CBG) are the two main non-psychotropic phytocannabinoids with high application potential in drug development. Both substances are redox-active and are intensively investigated for their cytoprotective and antioxidant action in vitro. In this study, we focused on an in vivo safety evaluation and the effect of CBD and CBG on the redox status in rats in a 90-d experiment. The substances were administered orogastrically in a dose of 0.66mg synthetic CBD or 0.66mg/1.33mg CBG/kg/day. CBD produced no changes in the red or white blood count or biochemical blood parameters in comparison to the control. No deviations in the morphology or histology of the gastrointestinal tract and liver were observed. After 90 d of CBD exposure, a significant improvement in redox status was found in the blood plasma and liver. The concentration of malondialdehyde and carbonylated proteins was reduced compared to the control. In contrast to CBD, total oxidative stress was significantly increased and this was accompanied by an elevated level of malondialdehyde and carbonylated proteins in CBG-treated animals. Hepatotoxic (regressive changes) manifestations, disruption in white cell count, and alterations in the ALT activity, level of creatinine and ionized calcium were also found in CBG-treated animals. Based on liquid chromatography-mass spectrometry analysis, CBD/CBG accumulated in rat tissues (in the liver, brain, muscle, heart, kidney and skin) at a low ng level per gram. Both CBD and CBG molecular structures include a resorcinol moiety. In CBG, there is an extra dimethyloctadienyl structural pattern, which is most likely responsible for the disruption to the redox status and hepatic environment. The results are valuable to further investigation of the effects of CBD on redox status and should contribute towards opening up critical discussion on the applicability of other non-psychotropic cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/36796712/

https://www.sciencedirect.com/science/article/abs/pii/S0300483X2300046X?via%3Dihub

The cannabidiol and marijuana research expansion act: Promotion of scientific knowledge to prevent a national health crisis

The Lancet Regional Health - Americas

“While the use of medical and recreational cannabis is rapidly expanding under state jurisdiction, the convolution of federal regulations is obstructing research progress to the detriment of healthcare equity and the protection of vulnerable populations, such as the underaged. U.S. Senate bill S.253 is designed to accelerate the development of trusted preclinical and clinical principles based on scientific data to guide physicians in their daily practice, inform lawmakers, and thereby protect public health. This goes together with a reinforcement of the legal protection that practitioners have acquired over years of litigation with the federal government when working with their patients. S.253 supports open communication between physicians and their patients when discussing cannabis as a treatment option. The bill passed the U.S. Senate on March 24, 2022.”

https://pubmed.ncbi.nlm.nih.gov/36777382/

https://www.sciencedirect.com/science/article/pii/S2667193X22001429?via%3Dihub

Rare Phytocannabinoids Exert Anti-Inflammatory Effects on Human Keratinocytes via the Endocannabinoid System and MAPK Signaling Pathway

ijms-logo

“Increasing evidence supports the therapeutic potential of rare cannabis-derived phytocannabinoids (pCBs) in skin disorders such as atopic dermatitis, psoriasis, pruritus, and acne. However, the molecular mechanisms of the biological action of these pCBs remain poorly investigated.

In this study, an experimental model of inflamed human keratinocytes (HaCaT cells) was set up by using lipopolysaccharide (LPS) in order to investigate the anti-inflammatory effects of the rare pCBs cannabigerol (CBG), cannabichromene (CBC), Δ9-tetrahydrocannabivarin (THCV) and cannabigerolic acid (CBGA). To this aim, pro-inflammatory interleukins (IL)-1β, IL-8, IL-12, IL-31, tumor necrosis factor (TNF-β) and anti-inflammatory IL-10 levels were measured through ELISA quantification. In addition, IL-12 and IL-31 levels were measured after treatment of HaCaT cells with THCV and CBGA in the presence of selected modulators of endocannabinoid (eCB) signaling. In the latter cells, the activation of 17 distinct proteins along the mitogen-activated protein kinase (MAPK) pathway was also investigated via Human Phosphorylation Array.

Our results demonstrate that rare pCBs significantly blocked inflammation by reducing the release of all pro-inflammatory ILs tested, except for TNF-β. Moreover, the reduction of IL-31 expression by THCV and CBGA was significantly reverted by blocking the eCB-binding TRPV1 receptor and by inhibiting the eCB-hydrolase MAGL. Remarkably, THCV and CBGA modulated the expression of the phosphorylated forms (and hence of the activity) of the MAPK-related proteins GSK3β, MEK1, MKK6 and CREB also by engaging eCB hydrolases MAGL and FAAH.

Taken together, the ability of rare pCBs to exert an anti-inflammatory effect in human keratinocytes through modifications of eCB and MAPK signaling opens new perspectives for the treatment of inflammation-related skin pathologies.”

https://pubmed.ncbi.nlm.nih.gov/36769042/

“Overall, this proof of concept, which shows that in inflamed human keratinocytes, rare pCBs can indeed interact with specific eCB system elements, opens new perspectives for possible treatments of inflammation-related skin diseases. Incidentally, such interactions between pCBs and eCB system seems to hold therapeutic potential well beyond the skin, such as possible treatments reported for autism spectrum disorders and cancer”

https://www.mdpi.com/1422-0067/24/3/2721

“Effects of Rare Phytocannabinoids on the Endocannabinoid System of Human Keratinocytes”

https://pubmed.ncbi.nlm.nih.gov/35628241/

The Cannabis Plant as a Complex System: Interrelationships between Cannabinoid Compositions, Morphological, Physiological and Phenological Traits

plants-logo

“Maintaining specific and reproducible cannabinoid compositions (type and quantity) is essential for the production of cannabis-based remedies that are therapeutically effective.

The current study investigates factors that determine the plant’s cannabinoid profile and examines interrelationships between plant features (growth rate, phenology and biomass), inflorescence morphology (size, shape and distribution) and cannabinoid content. An examination of differences in cannabinoid profile within genotypes revealed that across the cultivation facility, cannabinoids’ qualitative traits (ratios between cannabinoid quantities) remain fairly stable, while quantitative traits (the absolute amount of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabichromene (CBC), cannabigerol (CBG), Δ9-tetrahydrocannabivarin (THCV) and cannabidivarin (CBDV)) can significantly vary.

The calculated broad-sense heritability values imply that cannabinoid composition will have a strong response to selection in comparison to the morphological and phenological traits of the plant and its inflorescences. Moreover, it is proposed that selection in favour of a vigorous growth rate, high-stature plants and wide inflorescences is expected to increase overall cannabinoid production. Finally, a range of physiological and phenological features was utilised for generating a successful model for the prediction of cannabinoid production.

The holistic approach presented in the current study provides a better understanding of the interaction between the key features of the cannabis plant and facilitates the production of advanced plant-based medicinal substances.”

https://pubmed.ncbi.nlm.nih.gov/36771577/

“These findings will have a significant impact on the breeding and cultivation of the chemotypically stable and reproducible cannabis genotypes that will facilitate the production of novel medicinal applications.”

https://www.mdpi.com/2223-7747/12/3/493

Cannabinoids in the Modulation of Oxidative Signaling

ijms-logo

“Cannabis sativa-derived compounds, such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and components of the endocannabinoids system, such as N-arachidonoylethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), are extensively studied to investigate their numerous biological effects, including powerful antioxidant effects. Indeed, a series of recent studies have indicated that many disorders are characterized by alterations in the intracellular antioxidant system, which lead to biological macromolecule damage. These pathological conditions are characterized by an unbalanced, and most often increased, reactive oxygen species (ROS) production.

For this study, it was of interest to investigate and recapitulate the antioxidant properties of these natural compounds, for the most part CBD and THC, on the production of ROS and the modulation of the intracellular redox state, with an emphasis on their use in various pathological conditions in which the reduction of ROS can be clinically useful, such as neurodegenerative disorders, inflammatory conditions, autoimmunity, and cancers. The further development of ROS-based fundamental research focused on cannabis sativa-derived compounds could be beneficial for future clinical applications.”

https://pubmed.ncbi.nlm.nih.gov/36768835/

“In conclusion, it has been reported that cannabinoids modulate oxidative stress in inflammation and autoimmunity, which makes them a potential therapeutic approach for different kinds of pathologies.”

https://www.mdpi.com/1422-0067/24/3/2513

Cannabidiol and Cannabigerol Exert Antimicrobial Activity without Compromising Skin Microbiota

ijms-logo

“Cannabidiol (CBD) and cannabigerol (CBG) are two pharmacologically active phytocannabinoids of Cannabis sativa L. Their antimicrobial activity needs further elucidation, particularly for CBG, as reports on this cannabinoid are scarce. We investigated CBD and CBG’s antimicrobial potential, including their ability to inhibit the formation and cause the removal of biofilms.

Our results demonstrate that both molecules present activity against planktonic bacteria and biofilms, with both cannabinoids removing mature biofilms at concentrations below the determined minimum inhibitory concentrations. We report for the first time minimum inhibitory and lethal concentrations for Pseudomonas aeruginosa and Escherichia coli (ranging from 400 to 3180 µM), as well as the ability of cannabinoids to inhibit Staphylococci adhesion to keratinocytes, with CBG demonstrating higher activity than CBD. The value of these molecules as preservative ingredients for cosmetics was also assayed, with CBG meeting the USP 51 challenge test criteria for antimicrobial effectiveness. Further, the exact formulation showed no negative impact on skin microbiota.

Our results suggest that phytocannabinoids can be promising topical antimicrobial agents when searching for novel therapeutic candidates for different skin conditions. Additional research is needed to clarify phytocannabinoids’ mechanisms of action, aiming to develop practical applications in dermatological use.”

https://pubmed.ncbi.nlm.nih.gov/36768709/

“This report compares CBD and CBG’s antimicrobial effectiveness and further cements phytocannabinoids’ potential to be used as antimicrobial agents. Both molecules’ antimicrobial capacity strongly depends on the target microorganism, namely whether it is Gram-negative or Gram-positive. Nonetheless, we were able to determine MICs for all tested strains, including S. pyogenesE. coli, and P. aeruginosa. It is of note that CBG revealed a stronger antimicrobial effect than CBD, particularly in the challenge test and in the antibiofilm assay. Further studies are needed to understand these discrepancies, as they may be connected to structural differences, receptor-binding affinity, or another mechanism other than a receptor-mediated one. Since no significant impact on the skin microbiota was observed and given its current widespread use, both CBD and CBG might be considered safe. Thus, we can assume that the development of topical formulations with active concentrations of CBG and/or CBD might represent a promising approach to tackle skin conditions where microorganisms and inflammation play a fundamental role, including psoriasis, atopic dermatitis, and acne.”

https://www.mdpi.com/1422-0067/24/3/2389

Cannabidiol mediates epidermal terminal differentiation and redox homeostasis through aryl hydrocarbon receptor (AhR)-dependent signaling

Home Page: Journal of Dermatological Science

“Background: Cannabidiol, a non-psychoactive phytocannabinoid, has antioxidant and anti-inflammatory activity in keratinocytes. However, the signaling pathway through which cannabidiol exerts its effect on keratinocytes or whether it can modulate keratinocyte differentiation has not been fully elucidated yet.

Objective: We investigated whether cannabidiol modulates epidermal differentiation and scavenges reactive oxygen species through the aryl hydrocarbon receptor (AhR) in keratinocytes and epidermal equivalents.

Methods: We investigated the cannabidiol-induced activation of AhR using AhR luciferase reporter assay, qRT-PCR, western blot, and immunofluorescence assays. We also analyzed whether keratinocyte differentiation and antioxidant activity are regulated by cannabidiol-induced AhR activation.

Results: In both keratinocytes and epidermal equivalents, cannabidiol increased both the mRNA and protein expression of filaggrin, involucrin, NRF2, and NQO1 and the mRNA expression of the AhR target genes, including CYP1A1 and aryl hydrocarbon receptor repressor. Additionally, cannabidiol showed antioxidant activity that was attenuated by AhR knockdown or co-administration with an AhR antagonist. Moreover, cannabidiol increased the ratio of OVOL1/OVOL2 mRNA expression, which is a downstream regulator of AhR that mediates epidermal differentiation. In addition to increased expression of barrier-related proteins, cannabidiol-treated epidermal equivalent showed a more prominent granular layer than the control epidermis. The increased granular layer by cannabidiol was suppressed by the AhR antagonist.

Conclusion: Cannabidiol can be a modulator of the AhR-OVOL1-filaggrin axis and AhR-NRF2-NQO1 signaling, thus indicating a potential use of cannabidiol in skin barrier enhancement and reducing oxidative stress.”

https://pubmed.ncbi.nlm.nih.gov/36725458/

https://www.jdsjournal.com/article/S0923-1811(23)00024-5/fulltext

Do tobacco and cannabis use and co-use predict lung function: A longitudinal study

Respiratory Medicine | Journal | ScienceDirect.com by Elsevier

“Background: Use of tobacco and cannabis is common and has been reported to predict lung function. Less is known about co-use of tobacco and cannabis and their impact on changes in lung function to early adulthood.

Research question: The study examines whether cigarette smoking or cannabis use and co-use are each associated with lung function in a population sample of young adults.

Study design and methods: Data are from a prospective cohort study of cigarette smoking, cannabis use and co-use at 21 and 30 years of age and lung function (FVC, FEV1, FEV1/FVC) measured at 30 years. Lung function results are transformed using Global Lung Function Formulae. Subjects are the children of pregnant women who were recruited into the cohort study over the period 1981-3. Respondents were administered a spirometry assessment at 21 and 30 years of age. These respondents completed a smoking and cannabis use questionnaire at 21- and 30-year follow-ups.

Results: Cigarette smoking (with or without cannabis use) is associated with reduced airflow. There is no consistent association between cannabis use and measures of lung function. The co-use of tobacco and cannabis appears to entail no additional risk to lung function beyond the risks associated with tobacco use alone.

Interpretation: Persistent cigarette smoking is associated with reduced airflow even in young adults. Cannabis use does not appear to be related to lung function even after years of use.”

https://pubmed.ncbi.nlm.nih.gov/36682602/

“•Cigarette smoking and cannabis use and co-use are risk factors for impaired lung function.

By 30 years, those who have smoked cigarettes since adolescence already show evidence of impairment of lung function.

By 30 years, those who used cannabis since the adolescent period do not appear to have evidence of impaired lung function.

Co-use of tobacco and cannabis does not appear to predict lung function beyond the effects of tobacco use alone.”

https://www.resmedjournal.com/article/S0954-6111(23)00012-4/fulltext

“Smoking Cannabis Not Associated With Impaired Lung Functioning In Latest Study”

https://www.forbes.com/sites/emilyearlenbaugh/2023/02/01/smoking-cannabis-not-associated-with-impaired-lung-functioning-in-latest-study/?sh=5f2e60c6a630

Hemp seeds: Nutritional value, associated bioactivities and the potential food applications in the Colombian context

Frontiers - Crunchbase Company Profile & Funding

“For many years, Colombia was one of the countries with the largest illegal cultivation of cannabis around the world. Currently, it is going through a period of transition with a new government law that recently allows the cultivation, transformation, and commercialization of such plant species. In this sense, the identification of strategies for the valorization of products or by-products from Cannabis sativa represent a great opportunity to improve the value chain of this crop.

One of these products is hemp seeds, which are exceptionally nutritious and rich in healthy lipids (with high content of three polyunsaturated fatty acids: linoleic acid, alpha-linolenic acid, and gamma-linolenic acid), good quality protein, and several minerals. In addition, hemp seeds contain THC (tetrahydrocannabinol) or CBD (cannabidiol) in traces, molecules that are responsible for the psychoactive and therapeutic properties of cannabis. These low terpenophenolic contents make it more attractive for food applications.

This fact, together with the constant search for proteins of vegetable origin and natural food ingredients, have aroused an important interest in the study of this biomass. Some bioactivities of phytochemical compounds (polyphenols and terpenoids, mainly) present in hemp seeds have provided antioxidant, antimicrobial, and anti-inflammatory properties. This review summarizes and discusses the context of hemp use in Latin-American and the new opportunities for hemp seeds culture in Colombia considering the valuable nutritional value, main functional bioactivities, and recent advances in food market applications of hemp seeds.”

https://pubmed.ncbi.nlm.nih.gov/36712539/

“As a future trend, a holistic approach by the use of hemp seed could be employed as a food ingredient, in Colombia and those Latin American countries where the legislation has been relaxed. This is in the line with the increasing awareness about nutritional dietary patterns as well as the therapeutic application of plant-based food for improving the human health population, aiding to decrease nutrition-related diseases, and ensuring the physical and mental wellbeing of the population.”

https://www.frontiersin.org/articles/10.3389/fnut.2022.1039180/full