Changes in Hepatic Phospholipid Metabolism in Rats under UV Irradiation and Topically Treated with Cannabidiol

antioxidants-logo“The liver is a key metabolic organ that is particularly sensitive to environmental factors, including UV radiation. As UV radiation induces oxidative stress and inflammation, natural compounds are under investigation as one method to counteract these consequences.

The aim of this study was to assess the effect of topical application of phytocannabinoid-cannabidiol (CBD) on the skin of nude rats chronically irradiated with UVA/UVB, paying particular attention to its impact on the liver antioxidants and phospholipid metabolism.

The results of this study indicate that CBD reaches the rat liver where it is then metabolized into decarbonylated cannabidiol, 7-hydroxy-cannabidiol and cannabidiol-glucuronide. CBD increased the levels of GSH and vitamin A after UVB radiation. Moreover, CBD prevents the increase of 4-hydroxynonenal and 8-iso-prostaglandin-F levels in UVA-irradiated rats. As a consequence of reductions in phospholipase A2 and cyclooxygenases activity following UV irradiation, CBD upregulates the level of 2-arachidonoylglycerol and downregulates prostaglandin E2 and leukotriene B4. Finally, CBD enhances decreased level of 15-deoxy-Δ-12,14-prostaglandin J2 after UVB radiation and 15-hydroxyeicosatetraenoic acid after UVA radiation.

These data show that CBD applied to the skin prevents ROS- and enzyme-dependent phospholipid metabolism in the liver of UV-irradiated rats, suggesting that it may be used as an internal organ protector.”

https://pubmed.ncbi.nlm.nih.gov/34439405/

https://www.mdpi.com/2076-3921/10/8/1157

Localisation of Cannabinoid and Cannabinoid-Related Receptors in the Horse Ileum

Journal of Equine Veterinary Science“Colic is a common digestive disorder in horses and one of the most urgent problems in equine medicine. A growing body of literature has indicated that the activation of cannabinoid receptors could exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity.

The localisation of cannabinoid and cannabinoid-related receptors in the intestine of the horse has not yet been investigated. The purpose of this study was to immunohistochemically localise the cellular distribution of canonical and putative cannabinoid receptors in the ileum of healthy horses.

Distal ileum specimens were collected from six horses at the slaughterhouse. The tissues were fixed and processed to obtain cryosections which were used to investigate the immunoreactivity of canonical cannabinoid receptors 1 (CB1R) and 2 (CB2R), and three putative cannabinoid-related receptors: nuclear peroxisome proliferator-activated receptor-alpha (PPARα), transient receptor potential ankyrin 1 and serotonin 5-HT1a receptor (5-HT1aR).

Cannabinoid and cannabinoid-related receptors showed a wide distribution in the ileum of the horse.

The epithelial cells showed immunoreactivity for CB1R, CB2R and 5-HT1aR. Lamina propria inflammatory cells showed immunoreactivity for CB2R and 5-HT1aR. The enteric neurons showed immunoreactivity for CB1R, transient receptor potential ankyrin 1 and PPARα. The enteric glial cells showed immunoreactivity for CB1R and PPARα. The smooth muscle cells of the tunica muscularis and the blood vessels showed immunoreactivity for PPARα.

The present study represents a histological basis which could support additional studies regarding the distribution of cannabinoid receptors during gastrointestinal inflammatory diseases as well as studies assessing the effects of non-psychotic cannabis-derived molecules in horses for the management of intestinal diseases.”

https://pubmed.ncbi.nlm.nih.gov/34416995/

“Horses are often affected by gastrointestinal pathologies. Researchers are searching for new therapies for equine gastrointestinal diseases. New products with cannabinoid receptor agonists have been produced for horses. Cannabinoid receptors showed a wide distribution in the ileum of the horse. Activation of cannabinoids receptors could attenuate intestinal inflammation.”

https://www.sciencedirect.com/science/article/abs/pii/S073708062100318X?via%3Dihub

 

The Impact of CB1 Receptor on Inflammation in Skeletal Muscle Cells

Dove Medical Press - Open Access Publisher of Medical Journals“Background: Various factors trigger the inflammatory response and cytokine activation in skeletal muscle. Inflamed muscle will exhibit significant levels of inflammation and cytokine activity. Interleukin-6 (IL-6), a pro-inflammatory cytokine, exerts pleiotropic effects on skeletal muscle. Endocannabinoid produced by all cell types binds to a class of G protein-coupled receptors, in particular cannabinoid CB1 receptors, to induce skeletal muscle actions.

Objective: The purpose of this research was to discover whether activation of cannabinoid CB1 receptors in L6 skeletal muscle cells may promote IL-6 gene expression.

Materials and methods: L6 skeletal muscle cells were cultured in 25 cm2 flasks and quantitative reverse transcription-polymerase chain reaction (probe-based) utilised to quantify IL-6 gene expression levels among different treatment settings.

Results: Arachidonyl-2′-chloroethylamide (ACEA) 10 nM, a persistent selective CB1 receptor agonist, promotes IL-6 gene expression in a time-dependent manner. Rimonabant 100 nM, a selective cannabinoid CB1 receptor antagonist, blocks the impact of ACEA. However, insulin does not change IL-6 gene expression.

Conclusion: For the first time, a unique link between ACEA and IL-6 up-regulation has been established; IL-6 up-regulation generated by ACEA is mediated in skeletal muscle through cannabinoid CB1 receptor activation. As a result, cannabinoid CB1 receptors may be useful pharmaceutical targets in the treatment of inflammation and related disorders in skeletal muscle tissues.”

https://pubmed.ncbi.nlm.nih.gov/34421307/

“In the present study, I have demonstrated that when cannabinoid CB1 receptors are activated, the expression of IL-6 increases in a way that is influenced by time. Such findings deliver a novel mechanism characterised by cannabinoid analogue playing the role of a pro-inflammatory mediator in the skeletal muscle tissue. The findings from the present study also imply that there may be a possible therapeutic use of cannabinoid CB1 receptor antagonist at acute early states for skeletal muscle dysfunction related to inflammation. My findings point to skeletal muscle cell cannabinoid CB1 receptor as a therapeutic target, and expand its potential to include anti-inflammatory effects in diabetes, obesity, and sarcopenia.”

https://www.dovepress.com/the-impact-of-cb1-receptor-on-inflammation-in-skeletal-muscle-cells-peer-reviewed-fulltext-article-JIR

Pharmacological characterisation of the CB 1 receptor antagonist activity of cannabidiol in the rat vas deferens bioassay

European Journal of Pharmacology“Cannabidiol is increasingly considered for treatment of a wide range of medical conditions. Binding studies suggest that cannabidiol binds to CB1 receptors. In the rat isolated vas deferens bioassay, a single electrical pulse causes a biphasic contraction from nerve-released ATP and noradrenaline. WIN 55,212-2 acts on prejunctional CB1 receptors to inhibit release of these transmitters. In this bioassay, we tested whether cannabidiol and SR141716 were acting as competitive antagonists of this receptor. Monophasic contractions mediated by ATP or noradrenaline in the presence of prazosin or NF449 (P2X1 inhibitor), respectively, were measured to a single electrical pulse delivered every 30 min. Following treatment with cannabidiol (10-100 μM) or SR141716 (0.003-10 μM), cumulative concentrations of WIN 55,212-2 (0.001-30 μM) were applied followed by a single electrical pulse. The WIN 55,212-2 concentration-contraction curve EC50 values were applied to global regression analysis to determine the pKB. The antagonist potency of cannabidiol at the CB1 receptor in the rat vas deferens bioassay matched the reported receptor binding affinity. Cannabidiol was a competitive antagonist of WIN 55,212-2 with pKB values of 5.90 when ATP was the effector transmitter and 5.29 when it was noradrenaline. Similarly, SR141716 was a competitive antagonist with pKB values of 8.39 for ATP and 7.67 for noradrenaline as the active transmitter. Cannabidiol’s low micromolar CB1 antagonist pKB values suggest that at clinical blood levels (1-3 μM) it may act as a CB1 antagonist at prejunctional neuronal sites with more potency when ATP is the effector than for noradrenaline.”

https://pubmed.ncbi.nlm.nih.gov/34416240/

https://www.sciencedirect.com/science/article/abs/pii/S0014299921005860?via%3Dihub

Efficacy and Safety of Cannabidiol Plus Standard Care vs Standard Care Alone for the Treatment of Emotional Exhaustion and Burnout Among Frontline Health Care Workers During the COVID-19 Pandemic: A Randomized Clinical Trial

Free Download JAMA Network Logo Vector from Tukuz.Com“Importance: Frontline health care professionals who work with patients with COVID-19 have an increased incidence of burnout symptoms. Cannabidiol (CBD) has anxiolytic and antidepressant properties and may be capable of reducing emotional exhaustion and burnout symptoms.

Objective: To investigate the safety and efficacy of CBD therapy for the reduction of emotional exhaustion and burnout symptoms among frontline health care professionals working with patients with COVID-19.

Interventions: Cannabidiol, 300 mg (150 mg twice per day), plus standard care or standard care alone for 28 days.

Main outcomes and measures: The primary outcome was emotional exhaustion and burnout symptoms, which were assessed for 28 days using the emotional exhaustion subscale of the Brazilian version of the Maslach Burnout Inventory-Human Services Survey for Medical Personnel.

Results: A total of 120 participants were randomized to receive either CBD, 300 mg, plus standard care (treatment arm; n = 61) or standard care alone (control arm; n = 59) for 28 days. Of those, 118 participants (59 participants in each arm; 79 women [66.9%]; mean age, 33.6 years [95% CI, 32.3-34.9 years]) received the intervention and were included in the efficacy analysis. In the treatment arm, scores on the emotional exhaustion subscale of the Maslach Burnout Inventory significantly decreased at day 14 (mean difference, 4.14 points; 95% CI, 1.47-6.80 points; partial eta squared [ηp2] = 0.08), day 21 (mean difference, 4.34 points; 95% CI, 0.94-7.73 points; ηp2 = 0.05), and day 28 (mean difference, 4.01 points; 95% CI, 0.43-7.59 points; ηp2 = 0.04). However, 5 participants, all of whom were in the treatment group, experienced serious adverse events: 4 cases of elevated liver enzymes (1 critical and 3 mild, with the mild elevations reported at the final 28-day assessment) and 1 case of severe pharmacodermia. In 2 of those cases (1 with critical elevation of liver enzymes and 1 with severe pharmacodermia), CBD therapy was discontinued, and the participants had a full recovery.

Conclusions and relevance: In this study, CBD therapy reduced symptoms of burnout and emotional exhaustion among health care professionals working with patients during the COVID-19 pandemic. However, it is necessary to balance the benefits of CBD therapy with potential undesired or adverse effects. Future double-blind placebo-controlled clinical trials are needed to confirm the present findings.”

https://pubmed.ncbi.nlm.nih.gov/34387679/

“Daily administration of CBD, 300 mg, combined with standard care reduced the symptoms and diagnoses of anxiety, depression, and emotional exhaustion among frontline health care professionals working with patients with COVID-19. Cannabidiol may act as an effective agent for the reduction of burnout symptoms among a population with important mental health needs worldwide.”

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2782994

Lifestyle Interventions Improving Cannabinoid Tone During COVID-19 Lockdowns May Enhance Compliance With Preventive Regulations and Decrease Psychophysical Health Complications

CrossFit | 190629“Studies investigating the psychosomatic effects of social isolation in animals have shown that one of the physiologic system that gets disrupted by this environment-affective change is the Endocannabinoid System. As the levels of endocannabinoids change in limbic areas and prefrontal cortex during stressful times, so is the subject more prone to fearful and negative thoughts and aggressive behavior. The interplay of social isolation on the hypothalamic-pituitary-adrenal axis and cannabinoid tone triggers a vicious cycle which further impairs the natural body’s homeostatic neuroendocrine levels and provokes a series of risk factors for developing health complications. In this paper, we explore the psychosomatic impact of prolonged quarantine in healthy individuals, and propose management and coping strategies that may improve endocannabinoid tone, such as integration of probiotics, cannabidiol, meditation, and physical exercise interventions with the aim of supporting interpersonal, individual, and professional adherence with COVID-19 emergency public measures whilst minimizing their psycho-physical impact.”

https://pubmed.ncbi.nlm.nih.gov/34335317/

https://www.frontiersin.org/articles/10.3389/fpsyt.2021.565633/full

 

Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment

ijms-logo“Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes.

The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson’s disease, Tourette’s syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been proven so far, results from the affinity of these compounds predominantly for the receptors of the endocannabinoid system (the cannabinoid receptor type 1 (CB1), type two (CB2), and the G protein-coupled receptor 55 (GPR55)) but, also, for peroxisome proliferator-activated receptor (PPAR), glycine receptors, serotonin receptors (5-HT), transient receptor potential channels (TRP), and GPR, opioid receptors.

The synergism of action of phytochemicals present in Cannabis sp. raw material is also expressed in their increased bioavailability and penetration through the blood-brain barrier. This review provides an overview of phytochemistry and pharmacology of compounds present in Cannabis extracts in the context of the current knowledge about their synergistic actions and the implications of clinical use in the treatment of selected diseases.”

https://pubmed.ncbi.nlm.nih.gov/33466734/

https://www.mdpi.com/1422-0067/22/2/778

Constituents of Cannabis Sativa

“The Cannabis sativa plant has been used medicinally and recreationally for thousands of years, but recently only relatively some of its constituents have been identified.

There are more than 550 chemical compounds in cannabis, with more than 100 phytocannabinoids being identified, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

These phytocannabinoids work by binding to the cannabinoid receptors, as well as other receptor systems. Also within cannabis are the aromatic terpenes, more than 100 of which have been identified.

Cannabis and its constituents have been indicated as therapeutic compounds in numerous medical conditions, such as pain, anxiety, epilepsy, nausea and vomiting, and post-traumatic stress disorder.

This chapter provides an overview of some of the biological effects of a number of the cannabinoids and terpenes, as well as discussing their known mechanisms of action and evidence of potential therapeutic effects.”

https://pubmed.ncbi.nlm.nih.gov/33332000/

https://link.springer.com/chapter/10.1007%2F978-3-030-57369-0_1

In quest of a new therapeutic approach in COVID-19: the endocannabinoid system

Publication Cover“The SARS-Cov-2 virus caused a high morbidity and mortality rate disease, that is the COVID-19 pandemic. Despite the unprecedented research interest in this field, the lack of specific treatments leads to severe complications in a high number of cases.

Current treatment includes antivirals, corticosteroids, immunoglobulins, antimalarials, interleukin-6 inhibitors, anti-GM-CSF, convalescent plasma, immunotherapy, antibiotics, circulation support, oxygen therapy, and circulation support. Due to the limited results, until specific treatments are available, other therapeutic approaches need to be considered.

The endocannabinoid system is found in multiple systems within the human body, including the immune system. Its activation can lead to beneficial results such as decreased viral entry, decreased viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α, or IFN-γ. Moreover, endocannabinoid system activation can lead to an increase in anti-inflammatory cytokines, mainly represented by IL-10.

Overall, the cannabinoid system can potentially reduce pulmonary inflammation, increase the immunomodulatory effect, decrease PMN infiltration, reduce fibrosis, and decrease viral replication, as well as decrease the ‘cytokine storm’. Although the cannabinoid system has many mechanisms to provide certain benefits in the treatment of SARS-CoV-2 infected patients, research in this field is needed for a better understanding of the cannabinoid impact in this situation.”

https://pubmed.ncbi.nlm.nih.gov/33683968/

“Concerning the SARS-CoV-2 infection, the cannabinoid effects on the immune system have the potential to limit the abnormal function of the immune system and therefore decrease the overall mortality.”

https://www.tandfonline.com/doi/full/10.1080/03602532.2021.1895204

α-Pinene: A never-ending story

Phytochemistry“α-Pinene represents a member of the monoterpene class and is highly distributed in higher plants like conifers, Juniper ssp. and Cannabis ssp.

α-Pinene has been used to treat respiratory tract infections for centuries. Furthermore, it plays a crucial role in the fragrance and flavor industry. In vitro assays have shown an enantioselective profile of (+)- and (-)-α-pinene for antibacterial and insecticidal activity, respectively.”

https://pubmed.ncbi.nlm.nih.gov/34365295/

https://www.sciencedirect.com/science/article/pii/S0031942221002065?via%3Dihub

Image 1

“α-Pinene Enhances the Anticancer Activity of Natural Killer Cells via ERK/AKT Pathway. Our findings demonstrate that α-pinene activates NK cells and increases NK cell cytotoxicity, suggesting it is a potential compound for cancer immunotherapy.” https://pubmed.ncbi.nlm.nih.gov/33440866/

“α-Pinene inhibits tumor invasion through downregulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. These results suggest that α-pinene has a significant effect on the inhibition of tumor invasion and may potentially be developed into an anti-metastatic drug.”   https://applbiolchem.springeropen.com/articles/10.1007/s13765-016-0175-6