“In this research, we examine the effects of cannabis use on creativity and evaluations of creativity. Drawing on both the broaden-and-build theory and the affect-as-information model, we propose that cannabis use would facilitate more creativity as well as more favorable evaluations of creativity via cannabis-induced joviality. We tested this prediction in two experiments, wherein participants were randomly assigned to either a cannabis use or cannabis abstinence condition.
We find support for our prediction that cannabis use facilitates joviality, which translates to more favorable evaluations of creativity of one’s own ideas and others’ ideas. However, our prediction that cannabis use facilitates creativity via joviality was not supported. Our findings suggest that cannabis use may positively bias evaluations of creativity but have no impact on creativity. Implications for theory and practice are discussed.”
“Liberalized state-level recreational cannabis policies in the United States (US) fostered important policy evaluations with a focus on epidemiological parameters such as proportions [e.g., active cannabis use prevalence; cannabis use disorder (CUD) prevalence].
This cannabis policy evaluation project adds novel evidence on a neglected parameter-namely, estimated occurrence of newly incident cannabis use for underage (<21 years) versus older adults. The project’s study populations were specified to yield nationally representative estimates for all 51 major US jurisdictions, with probability sample totals of 819,543 non-institutionalized US civilian residents between 2008 and 2019. Standardized items to measure cannabis onsets are from audio computer-assisted self-interviews. Policy effect estimates are from event study difference-in-difference (DiD) models that allow for causal inference when policy implementation is staggered.
The evidence indicates no policy-associated changes in the occurrence of newly incident cannabis onsets for underage persons, but an increased occurrence of newly onset cannabis use among older adults (i.e., >21 years). We offer a tentative conclusion of public health importance: Legalized cannabis retail sales might be followed by the increased occurrence of cannabis onsets for older adults, but not for underage persons who cannot buy cannabis products in a retail outlet.
Cannabis policy research does not yet qualify as a mature science. We argue that modeling newly incident cannabis use might be more informative than the modeling of prevalences when evaluating policy effects and provide evidence of the advantages of the event study model over regression methods that seek to adjust for confounding factors.”
“The constant search for new pharmacologically active compounds, especially those that do not exhibit toxic effects, intensifies the interest in plant-based ingredients and their potential use in pharmacotherapy.
One of the plants that has great therapeutic potential is Cannabis sativa L., a source of the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC), namely cannabidiol (CBD), which exhibits antioxidant and anti-inflammatory properties, and cannabigerol (CBG)-a biologically active compound that is present in much smaller quantities.
CBG is generated during the non-enzymatic decarboxylation of cannabigerolic acid, a key compound in the process of biosynthesis of phytocannabinoids and consequently the precursor to various phytocannabinoids. By interacting with G-protein-coupled receptors, CBG exhibits a wide range of biological activities, inter alia, anti-inflammatory, antibacterial and antifungal activities, regulation of the redox balance, and neuromodulatory effects.
Due to the wide spectrum of biological activities, CBG seems to be a very promising compound to be used in the treatment of diseases that require multidirectional pharmacotherapy. Moreover, it is suggested that due to the relatively rapid metabolism of cannabigerol, determination of the concentration of the phytocannabinoid in blood or oral fluid can be used to determine cannabis use. Therefore, it seems obvious that new therapeutic approaches using CBG can be expected.”
“Although plants and their components have been used in therapeutic activities for several thousand years, their conscious use as elements of drugs, dietary supplements, cosmetics, and other products exhibiting biomedical properties are the result of research carried out over the last 20 years. One of the plants whose ingredients are more and more often studied for use in biomedical and pharmaceutical activities is Cannabis sativa L. At the same time, it should be noted that compounds obtained from Cannabis sativa L. are usually considered more beneficial than synthetic ones, because the latter may cause unwanted side effects when used for longer periods of time.”
“At the moment, cannabigerol is one of the least-known phytocannabinoids found in Cannabis sativa L., which, however, shows promising potential in therapeutic actions. Considering that both CBG and its precursors and metabolites are lipophilic, it favors the penetration the penetration through biological membranes and indicates the possibility of biological activity in the lipid sphere mainly through interactions with the endocannabinoid system, including G-protein-coupled receptors. As a result of these interactions as well as direct actions, CBD exhibits antioxidant and anti-inflammatory properties, while both CBG and CBGA as well as its synthetic derivatives exhibit neuromodulatory effects. Moreover, CBG has been shown to reduce the survival of glioblastoma cells, similar to temozolomide used both in monotherapy and with CBG. So far, however, the data in this regard are inconclusive and, moreover, come from in vitro and animal studies that require validation on human tissues and cells used ex vivo, prior to possible clinical trials. No harmful effect of CBG on the human body has been found so far, and the proven biological activity indicates CBG and its derivatives as very promising natural compounds that should be thoroughly tested both in vitro and in vivo in order to unequivocally determine the therapeutic usefulness, especially with regard to inflammatory diseases. Therefore, it seems obvious that new therapeutic approaches using the non-psychoactive ingredients of Cannabis sativa L, including CBG, can be expected in the nearest future.”
“The study was evaluated the impact of cannabidiol (CBD) on thyroid hormones by modulation cannabinoid receptor-2 (CB2) and vitamin D receptor (VDR) in rats fed with vitamin D3 deficiency diet (VDD).
CB2-receptors were analyzed by RT-PCR method and others biomarkers by ELISA. The relative expression of CB2 (thyroid ~ 4 folds), VDR protein (liver, 151.72%), and (kidney, 66%) was significantly increased in CBD-60 compared to VDD. Vitamin D3 metabolites were significantly increased serum (189.42%), kidney (73.84%), and liver (58.11%) in CBD-60 than VDD. Increased thyroxine (59.9%) and calcitonin (213.59%); while decreased thyroid-stimulating hormone (36.15%) and parathyroid hormone (38.64%) was observed CBD treatment in VDD rats.
In conclusion, CBD treatment improves CB2 and VDR expression and the level of vitamin D3 metabolites, along with improved thyroid hormones, including calcitonin. This is the first report with an improved CB2 and VDR expression after CBD treatment in VDD induced animals.
Thus, CBD can be considered to use in hypothyroidism conditions and to maintain bone health.”
“Introduction/background and purpose: Studies with Cannabis Sativa plant extracts and endogenous agonists of cannabinoid receptors have demonstrated anti-inflammatory, bronchodilator, and antitussive properties in the airways of allergic and non-allergic animals. However, the potential therapeutic use of cannabis and cannabinoids for the treatment of respiratory diseases has not been widely investigated, in part because of local irritation of airways by needing to smoke the cannabis, poor bioavailability when administered orally due to the lipophilic nature of cannabinoids, and the psychoactive effects of Δ9-Tetrahydrocannabinol (Δ9-THC) found in cannabis. The primary purpose of this study was to investigate the anti-inflammatory effects of two of the non-psychotropic cannabinoids, cannabidiol (CBD) and cannabigerol (CBG) alone and in combination, in a model of pulmonary inflammation induced by bacterial lipopolysaccharide (LPS). The second purpose was to explore the effects of two different cannabinoid formulations administered orally (PO) and intraperitoneally (IP). Medium-chain triglyceride (MCT) oil was used as the sole solvent for one formulation, whereas the second formulation consisted of a Cremophor® EL (polyoxyl 35 castor oil, CrEL)-based micellar solution.
Results: Exposure of guinea pigs to LPS induced a 97 ± 7% and 98 ± 3% increase in neutrophils found in bronchoalveolar lavage fluid (BAL) at 4 h and 24 h, respectively. Administration of CBD and CBG formulated with MCT oil did not show any significant effects on the LPS-induced neutrophilia measured in the BAL fluid when compared with the vehicle-treated groups. Conversely, the administration of either cannabinoid formulated with CrEL induced a significant attenuation of the LPS induced recruitment of neutrophils into the lung following both intraperitoneal (IP) and oral (PO) administration routes, with a 55-65% and 50-55% decrease in neutrophil cell recruitment with the highest doses of CBD and CBG respectively. A combination of CBD and CBG (CBD:CBG = 1:1) formulated in CrEL and administered orally was also tested to determine possible interactions between the cannabinoids. However, a mixture of CBD and CBG did not show a significant change in LPS-induced neutrophilia. Surfactants, such as CrEL, improves the dissolution of lipophilic drugs in an aqueous medium by forming micelles and entrapping the drug molecules within them, consequently increasing the drug dissolution rate. Additionally, surfactants increase permeability and absorption by disrupting the structural organisation of the cellular lipid bilayer.
Conclusion: In conclusion, this study has provided evidence that CBD and CBG formulated appropriately exhibit anti-inflammatory activity. Our observations suggest that these non-psychoactive cannabinoids may have beneficial effects in treating diseases characterised by airway inflammation.”
“The discovery of the endocannabinoid system (ECS) has enabled the growth of scientific evidence supporting the use of cannabis and cannabinoids as therapeutic agents for various diseases.
Various studies have suggested the use of cannabinoids as possible treatments for inflammatory diseases”
“Cannabis sativa has long been known to affect numerous biological activities. Although plant extracts, purified cannabinoids, or synthetic cannabinoid analogs have shown therapeutic potential in pain, inflammation, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting, the underlying mechanisms of action remain ill-defined.
In this study we provide the first comprehensive overview of the effects of whole-plant Cannabis extracts and various pure cannabinoids on store-operated calcium (Ca2+) entry (SOCE) in several different immune cell lines.
SOCE is one of the most significant Ca2+ influx mechanism in immune cells and it is critical for the activation of T lymphocytes, leading to the release of pro-inflammatory cytokines and mediating inflammation and T cell proliferation, key mechanisms for maintaining chronic pain.
While the two major cannabinoids cannabidiol (CBD) and trans-Δ9-tetrahydrocannabinol (THC) were largely ineffective in inhibiting SOCE, we report for the first time that several minor cannabinoids, mainly the carboxylic acid derivatives and particularly the cannabigerolic acid (CBGA), demonstrated high potency against SOCE by blocking Calcium Release-Activated Calcium (CRAC) currents. Moreover, we show that this inhibition of SOCE resulted in a decrease of Nuclear Factor of Activated T-cells (NFAT) activation and Interleukin 2 (IL-2) production in human T lymphocytes.
Taken together, these results indicate that cannabinoid-mediated inhibition of a pro-inflammatory target such as SOCE may at least partially explain the anti-inflammatory and analgesic effects of Cannabis.”
“In recent years, cannabinoid (CB) products have gained popularity among the public. The anti-inflammatory properties of CBs have piqued the interest of researchers and clinicians because they represent promising avenues for the treatment of autoimmune and inflammatory skin disorders that may be refractory to conventional therapy.
The objective of this study was to review the existing literature regarding CBs for dermatologic conditions.
There were 13 articles on systemic CBs and 14 reports on topical CBs. Selective CB receptor type 2 agonists were found to be effective in treating diffuse cutaneous systemic sclerosis and dermatomyositis. Dronabinol showed efficacy for trichotillomania. Sublingual cannabidiol and Δ-9-tetrahydrocannabinol were successful in treating the pain associated with epidermolysis bullosa.
Available evidence suggests that CBs may be effective for the treatment of various inflammatory skin disorders. Although promising, additional research is necessary to evaluate efficacy and to determine dosing, safety, and long-term treatment guidelines.”
“In conclusion, both oral and topical CBs appear to be promising therapies for the treatment of various inflammatory and autoimmune skin disorders. Despite limited studies, the compilation of current evidence from the published literature supports the utility of topical and systemic CBs for the treatment of primary inflammatory skin disorders such as DM, diffuse cutaneous systemic sclerosis, atopic dermatitis, leg ulcers, and epidermolysis bullosa.”
“Cannabis exerts an indirect effect on dopamine (DA) output in the mesolimbic projection, a circuit implicated in reward processing and effort expenditure, and thus may be associated with aberrant effort-based decision making. The “amotivation syndrome” hypothesis suggests that regular cannabis use results in impaired capacity for goal-directed behavior. However, investigations of this hypothesis have used divergent methodology and have not controlled for key confounding variables.
The present study extends these findings by examining the relation between cannabis use and effort-related decision making in a sample of college students. Cannabis using (n = 25; 68% meeting criteria for Cannabis Use Disorder) and noncannabis using (n = 22) students completed the Effort Expenditure for Rewards Task (EEfRT). In generalized estimating equation models, reward magnitude, reward probability, and expected value predicted greater likelihood of selecting a high-effort trial. Furthermore, past-month cannabis days and cannabis use disorder symptoms predicted the likelihood of selecting a high-effort trial, such that greater levels of both cannabis use days and symptoms were associated with an increased likelihood after controlling for Attention Deficit/Hyperactivity Disorder (ADHD) symptoms, distress tolerance, income, and delay discounting.
The results provide preliminary evidence suggesting that college students who use cannabis are more likely to expend effort to obtain reward, even after controlling for the magnitude of the reward and the probability of reward receipt. Thus, these results do not support the amotivational syndrome hypothesis. Future research with a larger sample is required to evaluate possible associations between cannabis use and patterns of real-world effortful behavior over time.”
“Cannabis use is becoming increasingly tolerated, both culturally and legally; yet, the risks associated with cannabis use are still unclear. There is a perception among the general public that cannabis leads to amotivation and diminished effortful behavior. Our results do not support the amotivational hypothesis but, instead, that cannabis use is associated with a greater likelihood of selecting high effort trials.”
“Background: There is limited literature evaluating the impact of isolated cannabis use on outcomes for patients following spinal surgery. This study sought to compare 90-day complication, 90-day readmission, as well as 2-year revision rates between baseline cannabis users and non-users following thoracolumbar spinal fusion (TLF) for adult spinal deformity (ASD).
Results: 704 patients were identified (n=352 each), with comparable age, sex, race, primary insurance, Charlson/Deyo scores, surgical approach, and levels fused between cohorts (all, p>0.05). Cannabis users (versus non-users) incurred lower 90-day overall and medical complication rates (2.4% vs. 4.8%, p=0.013; 2.0% vs. 4.1%, p=0.018). Cohorts had otherwise comparable complication, revision, and readmission rates (p>0.05). Baseline cannabis use was associated with a lower risk of 90-day medical complications (OR=0.47, p=0.005). Isolated baseline cannabis use was not associated with 90-day surgical complications and readmissions, or two-year revisions.
Conclusion: Isolated baseline cannabis use, in the absence of any other diagnosed substance abuse disorders, was not associated with increased odds of 90-day surgical complications or readmissions or two-year revisions, though its use was associated with reduced odds of 90-day medical complications when compared to non-users undergoing TLF for ASD. Further investigations are warranted to identify the physiologic mechanisms underlying these findings. Level of Evidence: III.”
“Compared to patients with ASD who underwent TLF without baseline cannabis use, patients with isolated baseline cannabis use were found to have no increase in odds of incurring 90-day surgical complications or readmissions or revisions two years postoperatively, though reduced odds of experiencing 90-day medical complications were observed.”
“Loss of ovarian 17β-estradiol (E2) in postmenopause is associated with gut dysbiosis, inflammation, and increased risk of cardiometabolic disease and osteoporosis. The risk-benefit profile of hormone replacement therapy is not favorable in postmenopausal women therefore better treatment options are needed.
Cannabidiol (CBD), a non-psychotropic phytocannabinoid extracted from hemp, has shown pharmacological activities suggesting it has therapeutic value for postmenopause, which can be modeled in ovariectomized (OVX) mice.
We evaluated the efficacy of cannabidiol (25 mg/kg) administered perorally to OVX and sham surgery mice for 18 weeks. Compared to VEH-treated OVX mice, CBD-treated OVX mice had improved oral glucose tolerance, increased energy expenditure, improved whole body areal bone mineral density (aBMD) and bone mineral content as well as increased femoral bone volume fraction, trabecular thickness, and volumetric bone mineral density. Compared to VEH-treated OVX mice, CBD-treated OVX mice had increased relative abundance of fecal Lactobacillus species and several gene expression changes in the intestine and femur consistent with reduced inflammation and less bone resorption.
These data provide preclinical evidence supporting further investigation of CBD as a therapeutic for postmenopause-related disorders.”
“In conclusion, our results indicate that CBD treatment of OVX mice impacts the immune system and the gut microbiota to improve energy metabolism and bone homeostasis. These data indicate that CBD modulates a gut-bone axis to favorably alleviate several chronic disease symptoms of postmenopause.”