Effects of cannabidiol on simulated driving and cognitive performance: A dose-ranging randomised controlled trial

SAGE Journals

“Background: Cannabidiol (CBD), a major cannabinoid of Cannabis sativa, is widely consumed in prescription and non-prescription products. While CBD is generally considered ‘non-intoxicating’, its effects on safety-sensitive tasks are still under scrutiny.

Aim: We investigated the effects of CBD on driving performance.

Methods: Healthy adults (n = 17) completed four treatment sessions involving the oral administration of a placebo, or 15, 300 or 1500 mg CBD in a randomised, double-blind, crossover design. Simulated driving performance was assessed between ~45-75 and ~210-240 min post-treatment (Drives 1 and 2) using a two-part scenario with ‘standard’ and ‘car following’ (CF) components. The primary outcome was standard deviation of lateral position (SDLP), a well-established measure of vehicular control. Cognitive function, subjective experiences and plasma CBD concentrations were also measured. Non-inferiority analyses tested the hypothesis that CBD would not increase SDLP by more than a margin equivalent to a 0.05% blood alcohol concentration (Cohen’s dz = 0.50).

Results: Non-inferiority was established during the standard component of Drive 1 and CF component of Drive 2 on all CBD treatments and during the standard component of Drive 2 on the 15 and 1500 mg treatments (95% CIs < 0.5). The remaining comparisons to placebo were inconclusive (the 95% CIs included 0 and 0.50). No dose of CBD impaired cognition or induced feelings of intoxication (ps > 0.05). CBD was unexpectedly found to persist in plasma for prolonged periods of time (e.g. >4 weeks at 1500 mg).

Conclusion: Acute, oral CBD treatment does not appear to induce feelings of intoxication and is unlikely to impair cognitive function or driving performance.”

https://pubmed.ncbi.nlm.nih.gov/35637624/

“The results of this study suggest that acute, oral CBD treatment at doses up to 1500 mg does not induce feelings of intoxication and is unlikely to impair cognitive function or driving performance.”

https://journals.sagepub.com/doi/10.1177/02698811221095356

Exploration of Multiverse Activities of Endocannabinoids in Biological Systems

ijms-logo

“Over the last 25 years, the human endocannabinoid system (ECS) has come into the limelight as an imperative neuro-modulatory system. It is mainly comprised of endogenous cannabinoid (endocannabinoid), cannabinoid receptors and the associated enzymes accountable for its synthesis and deterioration. The ECS plays a proven role in the management of several neurological, cardiovascular, immunological, and other relevant chronic conditions. Endocannabinoid or endogenous cannabinoid are endogenous lipid molecules which connect with cannabinoid receptors and impose a fashionable impact on the behavior and physiological processes of the individual. Arachidonoyl ethanolamide or Anandamide and 2-arachidonoyl glycerol or 2-AG were the endocannabinoid molecules that were first characterized and discovered. The presence of lipid membranes in the precursor molecules is the characteristic feature of endocannabinoids. The endocannabinoids are released upon rapid enzymatic reactions into the extracellular space via activation through G-protein coupled receptors, which is contradictory to other neurotransmitter that are synthesized beforehand, and stock up into the synaptic vesicles. The current review highlights the functioning, synthesis, and degradation of endocannabinoid, and explains its functioning in biological systems.”

https://pubmed.ncbi.nlm.nih.gov/35628545/

https://www.mdpi.com/1422-0067/23/10/5734


Efficacy of cannabis and its constituents in disease management: Insights from clinical studies

Generic placeholder image

“There is a long history of informal use of Cannabis sativa (commonly called cannabis) for many purposes, including treating various ailments worldwide. However, the legalization of cannabis in multiple countries, specifically for medical purposes, has grabbed the researchers’ attention to discover the scientific evidence of cannabis’s beneficial effects. Among over 500 identified compounds (cannabinoids), Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are two major active cannabinoids derived from cannabis. Cannabinoids exert their effects through cannabinoid receptors (CB1R and CB2R). In the recent past, clinical trials have shown the efficacy of cannabis and cannabinoids for various human ailments such as cancer, neurological disorders, inflammatory bowel disease, chronic pain, and metabolic disorders. The commonly used constituents and derivatives of cannabis include CBD, THC, THCV, dronabinol, nabilone, and nabiximol. The cannabis constituents have also been used in combination with other agents such as megestrol acetate in some clinical trials. The common routes for the administration of cannabis are oral, sublingual, or topical. Cannabis has also been consumed through smoking, inhalation, or with food and tea. As high as 572 patients and as low as nine patients have participated in a single clinical trial. Cannabis is legalized in some countries with restrictions, such as Belize, Canada, Colombia, Costa Rica, The Czech Republic, Jamaica, Netherlands, South Africa, Spain, and Uruguay. This article provides a compilation of published studies focusing on clinal trials on the therapeutic effects of cannabis. The adverse effects of cannabis and its constituents are also discussed.”

https://pubmed.ncbi.nlm.nih.gov/35619266/

https://www.eurekaselect.com/article/123960

Anti-inflammation and gingival wound healing activities of Cannabis sativa L. subsp. sativa (hemp) extract and cannabidiol: An in vitro study

Archives of Oral Biology

“Objective: To evaluate the anti-inflammatory and gingival wound healing activities of Cannabis sativa L. subsp. sativa (hemp) extract and cannabidiol (CBD).

Design: The cellular bioactivities of hemp extract and CBD were determined the inhibition of TNF-α and IL-1β in LPS-induced murine macrophage (RAW 264.7) cells by using ELISA while wound healing activity in human gingival fibroblast (HGF-1) cells was performed by a scratch test assay. The cytotoxicity was also concerned and evaluated by MTT assay.

Results: The hemp extract and CBD significantly decreased TNF-α release by up to 91.05 ± 2.91% and 50.78 ± 7.21% of LPS activity, respectively, in a dose-dependent manner, compared to 10 µg/mL hydrocortisone (61.67 ± 3.79%). The hemp extract and CBD also significantly decreased IL-1β release, also in dose-dependent response, up to 78.03 ± 3.34% and 85.87 ± 1.11% of LPS activity, respectively, compared to 5 µg/mL hydrocortisone (80.81 ± 3.55%). The mean percentage of closure of the wound area was 27.92 ± 1.21% when exposed to 5 µg/mL hemp extract and 33.49 ± 1.67% when exposed to 0.5 µg/mL CBD, compared to 24.34 ± 2.29% for non-treated control.

Conclusions: Our study demonstrates that both hemp extract and CBD can inhibit TNF-α and IL-1β production in LPS-induced RAW 264.7 cells and promote wound healing in HGF-1 cells. This is the first to show that short-term exposure to hemp extract and CBD promoted gingival fibroblast wound healing, demonstrating that hemp extract and CBD have potential benefits in the treatment of oral inflammation and ulcers.”

https://pubmed.ncbi.nlm.nih.gov/35623115/

https://www.sciencedirect.com/science/article/abs/pii/S0003996922001212?via%3Dihub

ga1

Medical Cannabis Activity Against Inflammation: Active Compounds and Modes of Action

Frontiers in Pharmacology welcomes new Field Chief Editor – Science &  research news | Frontiers

“Inflammation often develops from acute, chronic, or auto-inflammatory disorders that can lead to compromised organ function. Cannabis (Cannabis sativa) has been used to treat inflammation for millennia, but its use in modern medicine is hampered by a lack of scientific knowledge. Previous studies report that cannabis extracts and inflorescence inhibit inflammatory responses in vitro and in pre-clinical and clinical trials. The endocannabinoid system (ECS) is a modulator of immune system activity, and dysregulation of this system is involved in various chronic inflammations. This system includes cannabinoid receptor types 1 and 2 (CB1 and CB2), arachidonic acid-derived endocannabinoids, and enzymes involved in endocannabinoid metabolism. Cannabis produces a large number of phytocannabinoids and numerous other biomolecules such as terpenes and flavonoids. In multiple experimental models, both in vitro and in vivo, several phytocannabinoids, including Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabigerol (CBG), exhibit activity against inflammation. These phytocannabinoids may bind to ECS and/or other receptors and ameliorate various inflammatory-related diseases by activating several signaling pathways. Synergy between phytocannabinoids, as well as between phytocannabinoids and terpenes, has been demonstrated. Cannabis activity can be improved by selecting the most active plant ingredients (API) while eliminating parts of the whole extract. Moreover, in the future cannabis components might be combined with pharmaceutical drugs to reduce inflammation.”

https://pubmed.ncbi.nlm.nih.gov/35614947/

“Cannabis compounds, in some cases via the endocannabinoids system, were shown to affect some of the cornerstones of chronic inflammation. However, in light of the large number of active molecules produced by cannabis and their sometimes-synergistic interactions, there is a need to better specify cannabis-based treatments and the active compounds, while utilizing the synergy identified between cannabis phytomolecules. Thus, even if CBD or THC are considered potentially leading molecules, additional cannabis-derived compounds may be selected for improved activity.

Future approaches for improved usage of cannabis demand the development, transformation and formulation of full-spectrum cannabis extracts into active plant ingredients (APIs) to achieve higher effectivity.

Importantly, once the mode of action of phytocannabinoids and that of their combination is known, APIs might be targeted towards specific mechanisms involved with inflammation.

Moreover, it might be that cannabis components can be combined with other pharmaceutical drugs to reduce inflammation. “

https://www.frontiersin.org/articles/10.3389/fphar.2022.908198/full


Antioxidant Activity of Hemp ( Cannabis sativa L.) Seed Oil in Drosophila melanogaster Larvae under Non-Stress and H 2 O 2-Induced Oxidative Stress Conditions

antioxidants-logo

“The oil extracted from hemp seeds has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. The potential of this oil for the prevention of oxidative stress and for the treatment of oxidative-stress-induced ailments is of increasing interest. Most studies of hemp seed oil were conducted in-vitro, meaning we lack information about effects and activity in vivo. In the present study, we evaluated the hypothesis that hemp seed oil at different concentrations improves the oxidative state of D. melanogaster, under non-stress as well as hydrogen-peroxide-induced stress. We analyzed the effects of hemp seed oil on oxidative stress markers and on the life cycle of D.melanogaster under non-stress and hydrogen-peroxide-induced stress conditions. D.melanogaster larvae were exposed to hemp seed oil concentrations ranging from 12.5 to 125 μL/mL. The results revealed that under non-stress conditions, oil concentrations up to 62.5 µL/mL did not induce negative effects on the life cycle of D. melanogaster and maintained the redox status of the larval cells at similar levels to the control level. Under oxidative stress conditions, biochemical parameters were significantly affected and only two oil concentrations, 18.7 and 31.2 µL/mL, provided protection against hydrogen peroxide stress effects. A higher oil concentration (125 μL/mL) exerted negative effects on the oxidative status and increased larval mortality. The tested oil was characterized chemically by NMR, transesterification, and silylation, followed by GC-MS analyses, and was shown to contain polyunsaturated fatty acid triglycerides and low levels of tocopherols. The high levels of linoleic and linolenic acids in the oil are suggested to be responsible for the observed in vivo antioxidant effects. Taken together, the results show that hemp seed oil is effective for reducing oxidative stress at the cellular level, thus supporting the hypothesis. The obtained results point to the potential of hemp seed oil for the prevention and treatment of conditions caused by the action of reactive oxygen species.”

https://pubmed.ncbi.nlm.nih.gov/34067432/

https://www.mdpi.com/2076-3921/10/6/830

A review on the techno-functional, biological, and health-promoting properties of hempseed-derived proteins and peptides

Journal of Food Biochemistry

“Protein-energy malnutrition is a global challenge that demands urgent attention, especially with the increasing population growth and unmatched food security plans. One strategy is to expand the list of protein sources, such as neglected and underutilized crops, with high protein content. A good number of plant proteins, in addition to their nutritional benefits, exert therapeutic properties as seen in seeds derived from legumes and emerging sources such as hemp. In this review, the transepithelial transport, functional, and biological properties of hempseed proteins (HSPs) and peptides were discussed. The review also described the potential safety issues of incorporating hempseeds in food products. Due to the multitargeted effects of hempseed-derived proteins and their peptides against many chronic diseases, and their functional properties, current knowledge shows that hempseed has tremendous potential for functional food and nutraceutical applications.

PRACTICAL APPLICATIONS: The alarming rate of malnutrition and the attendant health consequences demand that underexploited nutrient-rich crops should be incorporated as part of our common dietary sources. Among these crops, hempseed is gaining attention as an emerging source of proteins and peptides with promising potential in prevention and management of chronic diseases such as diabetes, hypertension, cancer, hypercholesterolemia, obesity, and diseases whose etiology involves oxidative stress and inflammation. Fortunately, a growing body of research evidence is demonstrating that hempseed is a reservoir of proteins and peptides with nutraceutical potentials for curbing life-threatening diseases.”

https://pubmed.ncbi.nlm.nih.gov/35312074/

https://onlinelibrary.wiley.com/doi/10.1111/jfbc.14127


Tobacco, but Neither Cannabis Smoking Nor Co-Drug Use, Is Associated With Hearing Loss in the National Health and Nutrition Examination Survey, 2011 to 2012 and 2015 to 2016

Ear and Hearing - Home | Facebook


“Introduction:
A relationship between tobacco smoking and hearing loss has been reported; associations with cannabis smoking are unknown. In this cross-sectional population-based study, we examined relationships between hearing loss and smoking (tobacco, cannabis, or co-drug use).

Methods: We explored the relationship between hearing loss and smoking among 2705 participants [mean age = 39.41 (SE: 0.36) years] in the National Health and Nutrition Examination Survey (2011 to 12; 2015 to 16). Smoking status was obtained via questionnaire; four mutually exclusive groups were defined: nonsmokers, current regular cannabis smokers, current regular tobacco smokers, and co-drug users. Hearing sensitivity (0.5 to 8 kHz) was assessed, and two puretone averages (PTAs) computed: low- (PTA0.5,1,2) and high-frequency (PTA3,4,6,8). We defined hearing loss as threshold >15 dB HL. Multivariable logistic regression was used to examine sex-specific associations between smoking and hearing loss in the poorer ear (selected based on PTA0.5,1,2) adjusting for age, sex, race/ethnicity, hypertension, diabetes, education, and noise exposure with sample weights applied.

Results: In the age-sex adjusted model, tobacco smokers had increased odds of low- and high-frequency hearing loss compared with non-smokers [odds ratio (OR) = 1.58, 95% confidence ratio (CI): 1.05 to 2.37 and OR = 1.97, 95% CI: 1.58 to 2.45, respectively]. Co-drug users also had greater odds of low- and high-frequency hearing loss [OR = 2.07, 95% CI: 1.10 to 3.91 and OR = 2.24, 95% CI: 1.27 to 3.96, respectively]. In the fully adjusted multivariable model, compared with non-smokers, tobacco smokers had greater odds of high-frequency hearing loss [multivariable adjusted odds ratio = 1.64, 95% CI: 1.28-2.09]. However, in the fully adjusted model, there were no statistically significant relationships between hearing loss (PTA0.5,1,2 or PTA3,4,6,8) and cannabis smoking or co-drug use.

Discussion: Cannabis smoking without concomitant tobacco consumption is not associated with hearing loss. However, sole use of cannabis was relatively rare and the prevalence of hearing loss in this population was low, limiting generalizability of the results. This study suggests that tobacco smoking may be a risk factor for hearing loss but does not support an association between hearing loss and cannabis smoking. More definitive evidence could be derived using physiological measures of auditory function in smokers and from longitudinal studies.”

https://pubmed.ncbi.nlm.nih.gov/35383601/

https://journals.lww.com/ear-hearing/Abstract/9900/Tobacco,_but_Neither_Cannabis_Smoking_Nor_Co_Drug.3.aspx

Heavy and Chronic Cannabis Addiction does not Impact Motor Function: BOLD-fMRI Study

Generic placeholder image

“Objective: The aim of this paper is to demonstrate the impact of heavy and chronic cannabis use on brain potential functional control, reorganization, and plasticity in the cortical area.

Methods: 23 cannabis users were convened in 3 user’s groups. The first group included 11 volunteers with an average of 15 joins/day; the second group included 6 volunteers with an average of 1.5 joins/day; the third group included 6 volunteers with an average of 2.8 joins/week. Besides, a 6 healthy volunteers (control group). All healthy and cannabis users underwent identical brain BOLD-fMRI assessment of the motor function. Besides, neuropsychological and full biological assessments were achieved.

Results: BOLD-fMRI maps of motor areas were obtained, including quantitative evaluation of the activations in the motor area. Besides, statistical analysis of various groups was achieved.

Conclusion: Chronic cannabis addiction of varying use strength by groups of heavy, moderate, low dose, and zero doses are shown to have systematically equivalent effects on the control of brain motor function. Indeed, the BOLD-fMRI shows a remarkable sensitivity to minimal brain plasticity and reorganization of the functional motor control of the studied cortical area, and such varionation was not shown. Specific elucidation of the cannabis effect mechanisms in this unique function should clarify further protective pharmacological effects. This might illuminate the use of neuronal resources to prepare processes for pharmacological use and pharmaceutical forms. This suggests exploring any potential cannabis pharmaceutical form in diseases involving motor impairments.”

https://pubmed.ncbi.nlm.nih.gov/35578884/

https://www.eurekaselect.com/article/123583

Indeterminacy of cannabis impairment and ∆ 9-tetrahydrocannabinol (∆ 9-THC) levels in blood and breath

Scientific Reports

“Previous investigators have found no clear relationship between specific blood concentrations of ∆9-tetrahydrocannabinol (∆9-THC) and impairment, and thus no scientific justification for use of legal “per se” ∆9-THC blood concentration limits. Analyzing blood from 30 subjects showed ∆9-THC concentrations that exceeded 5 ng/mL in 16 of the 30 subjects following a 12-h period of abstinence in the absence of any impairment. In blood and exhaled breath samples collected from a group of 34 subjects at baseline prior to smoking, increasing breath ∆9-THC levels were correlated with increasing blood levels (P < 0.0001) in the absence of impairment, suggesting that single measurements of ∆9-THC in breath, as in blood, are not related to impairment. When post-smoking duration of impairment was compared to baseline ∆9-THC blood concentrations, subjects with the highest baseline ∆9-THC levels tended to have the shortest duration of impairment. It was further shown that subjects with the shortest duration of impairment also had the lowest incidence of horizontal gaze nystagmus at 3 h post-smoking compared to subjects with the longest duration of impairment (P < 0.05). Finally, analysis of breath samples from a group of 44 subjects revealed the presence of transient cannabinoids such as cannabigerol, cannabichromene, and ∆9-tetrahydrocannabivarin during the peak impairment window, suggesting that these compounds may be key indicators of recent cannabis use through inhalation. In conclusion, these results provide further evidence that single measurements of ∆9-THC in blood, and now in exhaled breath, do not correlate with impairment following inhalation, and that other cannabinoids may be key indicators of recent cannabis inhalation.”

https://pubmed.ncbi.nlm.nih.gov/35585089/

“In conclusion, we present further evidence that single measurements of ∆9-THC in blood cannot establish impairment, that single measurements of ∆9-THC in exhaled breath likewise do not correlate with impairment, and that ∆9-THCV and CBC may be key indicators of recent cannabis use through inhalation within the impairment window.”

https://www.nature.com/articles/s41598-022-11481-5