Cannabis terpenes display variable protective and anti-aggregatory actions against neurotoxic β amyloid in vitro: highlighting the protective bioactivity of α-bisabolol in motorneuronal-like NSC-34 cells

“Background: Terpenes form a diverse class of naturally occurring chemicals ascribed various biological activities. Cannabis contains over 400 different terpenes of varying chemical complexity which may add to the known biological activities of phytocannabinoids of relevance to the increasing use of medical cannabis; however, to date have been incompletely characterized. We assessed three terpenes predominant in cannabis: α-bisabolol, myrcene and β-caryophyllene for neuroprotective and anti-aggregative properties in both undifferentiated and differentiated NSC-34 motorneuronal-like cells as a sensitive model for neurotoxicity to oxidative stress and amyloid β (Aβ1-42) protein exposure.

Methods: Cell viability was assessed biochemically using the MTT assay in the presence of either α-bisabolol, myrcene and β-caryophyllene (1-1000 µM) for 48 hr. Sub-toxic threshold test concentrations of each terpene were then applied to cells, alone or with concomitant incubation with the lipid peroxidant tert-butyl hyrdroperoxide (t-BHP) or amyloid β (Aβ1-42; 0-1 µM) to assess neuroprotective effects. Direct effects of each terpene on Aβ fibril formation and aggregation were also evaluated using the Thioflavin T (ThT) fluorometric kinetic assay, circular dichroism and transmission electron microscopy (TEM) to visualise fibril and aggregate morphology.

Results: Terpenes were intrinsically benign to NSC-34 cells up to 100 µM. No significant antioxidant effects were observed following t-BHP administration with myrcene and β-caryophyllene, however α-bisabolol provided a modest but significant increase in cell viability in undifferentiated cells. α-bisabolol also demonstrated a significant neuroprotective effect against amyloid β exposure, with β-caryophyllene also providing a lesser, but significant increase in cell viability. Protective effects of terpenes were more pronounced in undifferentiated versus differentiated cells, attributable more so to an attenuated loss of cell viability in response to Aβ1-42 following NSC-34 cell differentiation. Neuroprotection was associated with a direct inhibition of Aβ1-42 fibril and aggregate density, evidenced by both attenuated ThT fluorescence kinetics and both spectral and microscopic evidence of altered and diminished density of Aβ aggregates. While myrcene and β-caryophyllene also elicited reductions in ThT fluorescence and alterations in Aβ aggregation, these were less well associated with neuroprotective capacity.

Conclusions: These findings highlight a neuroprotective role of α-bisabolol against Aβ-mediated neurotoxicity associated with an inhibition of Aβ fibrillization and modest antioxidant effect against lipid peroxidation, while β-caryophyllene also provided a small but significant measure of protection to Aβ-mediated neurotoxicity. Anti-aggregatory effects were not directly correlated with neuroprotective efficacy. This demonstrates that bioactivity of selected terpenes should be a consideration in the emergent use of medicinal cannabis formulations for the treatment of neurodegenerative diseases.”

https://pubmed.ncbi.nlm.nih.gov/35278524/

Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles

“Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.”

https://pubmed.ncbi.nlm.nih.gov/35327432/

Non-psychotropic Cannabis sativa L. phytocomplex modulates microglial inflammatory response through CB2 receptors-, endocannabinoids-, and NF-κB-mediated signaling

“Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and β-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.”

https://pubmed.ncbi.nlm.nih.gov/35393641/

Cannabis-Based Products for the Treatment of Skin Inflammatory Diseases: A Timely Review

“The use of natural products in dermatology is increasingly being pursued due to sustainability and ecological issues, and as a possible way to improve the therapeutic outcome of chronic skin diseases, relieving the burden for both patients and healthcare systems. The legalization of cannabis by a growing number of countries has opened the way for researching the use of cannabinoids in therapeutic topical formulations. Cannabinoids are a diverse class of pharmacologically active compounds produced by Cannabis sativa (phytocannabinoids) and similar molecules (endocannabinoids, synthetic cannabinoids). Humans possess an endocannabinoid system involved in the regulation of several physiological processes, which includes naturally-produced endocannabinoids, and proteins involved in their transport, synthesis and degradation. The modulation of the endocannabinoid system is a promising therapeutic target for multiple diseases, including vascular, mental and neurodegenerative disorders. However, due to the complex nature of this system and its crosstalk with other biological systems, the development of novel target drugs is an ongoing challenging task. The discovery of a skin endocannabinoid system and its role in maintaining skin homeostasis, alongside the anti-inflammatory actions of cannabinoids, has raised interest in their use for the treatment of skin inflammatory diseases, which is the focus of this review. Oral treatments are only effective at high doses, having considerable adverse effects; thus, research into plant-based or synthetic cannabinoids that can be incorporated into high-quality, safe topical products for the treatment of inflammatory skin conditions is timely. Previous studies revealed that such products are usually well tolerated and showed promising results for example in the treatment of atopic dermatitis, psoriasis, and contact dermatitis. However, further controlled human clinical trials are needed to fully unravel the potential of these compounds, and the possible side effects associated with their topical use.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878527/

Is cannabidiol worth a trial in Rasmussen encephalitis?

“We report 3 patients (age 8, 13 and 14 years) with drug-resistant epilepsy due to Rasmussen encephalitis treated with cannabidiol in addition to their current antiseizure medication (ASM). In all three patients we observed a positive effect, which seemed to surpass the efficacy that would be expected from a different fourth or fifth antiseizure drug used during the course of the disease.”

https://pubmed.ncbi.nlm.nih.gov/35093803/


Will Cannabigerol Trigger Neuroregeneration after a Spinal Cord Injury? An In Vitro Answer from NSC-34 Scratch-Injured Cells Transcriptome

“Spinal cord injury affects the lives of millions of people around the world, often causing disability and, in unfortunate circumstances, death. Rehabilitation can partly improve outcomes and only a small percentage of patients, typically the least injured, can hope to return to normal living conditions. Cannabis sativa is gaining more and more interest in recent years, even though its beneficial properties have been known for thousands of years. Cannabigerol (CBG), extracted from C. sativa, is defined as the “mother of all cannabinoids” and its properties range from anti-inflammatory to antioxidant and neuroprotection. Using NSC-34 cells to model spinal cord injury in vitro, our work evaluated the properties of CBG treatments in motor neuron regeneration. While pre-treatment can modulate oxidative stress and increase antioxidant enzyme genes, such as Tnx1, decreasing Nos1 post-treatment seems to induce regeneration genes by triggering different pathways, such as Gap43 via p53 acetylation by Ep300 and Ddit3 and Xbp1 via Bdnf signaling, along with cytoskeletal remodeling signaling genes Nrp1 and Map1b. Our results indicate CBG as a phytocompound worth further investigation in the field of neuronal regeneration.”

https://pubmed.ncbi.nlm.nih.gov/35215230/

Δ 9 -Tetrahydrocannabinol promotes functional remyelination in the mouse brain

“Background and purpose: Research on demyelinating disorders aims to find novel molecules that are able to induce oligodendrocyte precursor cell differentiation to promote central nervous system remyelination and functional recovery. Δ9 -Tetrahydrocannabinol (THC), the most prominent active constituent of the hemp plant Cannabis sativa, confers neuroprotection in animal models of demyelination. However, the possible effect of THC on myelin repair has never been studied.

Experimental approach: By using oligodendroglia-specific reporter mouse lines in combination with two models of toxin-induced demyelination, we analysed the effect of THC on the processes of oligodendrocyte regeneration and functional remyelination.

Key results: We show that THC administration enhanced oligodendrocyte regeneration, white matter remyelination and motor function recovery. THC also promoted axonal remyelination in organotypic cerebellar cultures. THC remyelinating action relied on the induction of oligodendrocyte precursor differentiation upon cell cycle exit and via CB1 cannabinoid receptor activation.

Conclusions and implications: Overall, our study identifies THC administration as a promising pharmacological strategy aimed to promote functional CNS remyelination in demyelinating disorders.”

https://pubmed.ncbi.nlm.nih.gov/34216154/

Mechanistic origin of partial agonism of tetrahydrocannabinol for cannabinoid receptors

“Cannabinoid receptor 1 (CB1) is a therapeutically relevant drug target for controlling pain, obesity, and other central nervous system disorders. However, full agonists and antagonists of CB1 have been reported to cause serious side effects in patients. Therefore, partial agonists have emerged as a viable alternative as they can mitigate overstimulation and side effects. One of the key bottlenecks in the design of partial agonists, however, is the lack of understanding of the molecular mechanism of partial agonism itself. In this study, we examine two mechanistic hypotheses for the origin of partial agonism in cannabinoid receptors and predict the mechanistic basis of partial agonism exhibited by Δ9-Tetrahydrocannabinol (THC) against CB1. In particular, we inspect whether partial agonism emerges from the ability of THC to bind in both agonist and antagonist-binding poses or from its ability to only partially activate the receptor. We used extensive molecular dynamics simulations and Markov state modeling to capture the THC binding in both antagonist and agonist-binding poses in the CB1 receptor. Furthermore, we predict that binding of THC in the agonist-binding pose leads to rotation of toggle switch residues and causes partial outward movement of intracellular transmembrane helix 6 (TM6). Our simulations also suggest that the alkyl side chain of THC plays a crucial role in determining partial agonism by stabilizing the ligand in the agonist and antagonist-like poses within the pocket. Taken together, this study provides important insights into the mechanistic origin of the partial agonism of THC.”

https://pubmed.ncbi.nlm.nih.gov/35227761/

Cannabidiol and Terpene Formulation Reducing SARS-CoV-2 Infectivity Tackling a Therapeutic Strategy

“In late 2019, COVID-19 emerged in Wuhan, China. Currently, it is an ongoing global health threat stressing the need for therapeutic compounds. Linking the virus life cycle and its interaction with cell receptors and internal cellular machinery is key to developing therapies based on the control of infectivity and inflammation. In this framework, we evaluate the combination of cannabidiol (CBD), as an anti-inflammatory molecule, and terpenes, by their anti-microbiological properties, in reducing SARS-CoV-2 infectivity. Our group settled six formulations combining CBD and terpenes purified from Cannabis sativa L, Origanum vulgare, and Thymus mastichina. The formulations were analyzed by HPLC and GC-MS and evaluated for virucide and antiviral potential by in vitro studies in alveolar basal epithelial, colon, kidney, and keratinocyte human cell lines.

Conclusions and impact: We demonstrate the virucide effectiveness of CBD and terpene-based formulations. F2TC reduces the infectivity by 17%, 24%, and 99% for CaCo-2, HaCat, and A549, respectively, and F1TC by 43%, 37%, and 29% for Hek293T, HaCaT, and Caco-2, respectively. To the best of our knowledge, this is the first approach that tackles the combination of CBD with a specific group of terpenes against SARS-CoV-2 in different cell lines. The differential effectiveness of formulations according to the cell line can be relevant to understanding the pattern of virus infectivity and the host inflammation response, and lead to new therapeutic strategies.”

https://pubmed.ncbi.nlm.nih.gov/35242142/

Potential Neuroprotective Effect of Cannabinoids in Covid-19 Patients

“The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established, however, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease, and indirect mechanisms of inflammatory / autoimmune origin. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potential promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review we address the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a decrease in viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.”

https://pubmed.ncbi.nlm.nih.gov/35382723/