What Do You Know About Maryjane? A Systematic Review of the Current Data on the THC:CBD Ratio.

Publication Cover“Ratios of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact metabolism and therapeutic effects of cannabis.

The medical and scientific communities have not drawn substantive conclusions nor thoroughly explored THC:CBD ratios for “best practice” treatment of different disease processes and their sequelae.

While there is evidence that cannabis provides medical benefits, research is lacking on standardization of medical cannabis use in modern medical practices.”

https://www.ncbi.nlm.nih.gov/pubmed/32124675

Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria.

Scientific Reports “The cannabinoid cannabidiol (CBD) is characterised in this study as a helper compound against resistant bacteria. CBD potentiates the effect of bacitracin (BAC) against Gram-positive bacteria (Staphylococcus species, Listeria monocytogenes, and Enterococcus faecalis) but appears ineffective against Gram-negative bacteria. CBD reduced the MIC value of BAC by at least 64-fold and the combination yielded an FIC index of 0.5 or below in most Gram-positive bacteria tested. Morphological changes in S. aureus as a result of the combination of CBD and BAC included several septa formations during cell division along with membrane irregularities. Analysis of the muropeptide composition of treated S. aureus indicated no changes in the cell wall composition. However, CBD and BAC treated bacteria did show a decreased rate of autolysis. The bacteria further showed a decreased membrane potential upon treatment with CBD; yet, they did not show any further decrease upon combination treatment. Noticeably, expression of a major cell division regulator gene, ezrA, was reduced two-fold upon combination treatment emphasising the impact of the combination on cell division. Based on these observations, the combination of CBD and BAC is suggested to be a putative novel treatment in clinical settings for treatment of infections with antibiotic resistant Gram-positive bacteria.”

https://www.ncbi.nlm.nih.gov/pubmed/32139776

https://www.nature.com/articles/s41598-020-60952-0

Safety Assessment of a Hemp Extract using Genotoxicity and Oral Repeat-Dose Toxicity Studies in Sprague-Dawley Rats

Toxicology Reports“Cannabinoids are extracted from Cannabis sativa L. and are used for a variety of medicinal purposes.

Recently, there has been a focus on the cannabinoid Cannabidiol (CBD) and its potential benefits.

This study investigated the safety of a proprietary extract of C. sativa, consisting of 9% hemp extract (of which 6.27% is CBD) and 91% olive oil.

Given the potential of CBD for a variety of human uses and the limited data currently available, these results support that hemp extracts are likely safe human consumption and additional studies should be conducted to validate this conclusion.”

https://www.sciencedirect.com/science/article/pii/S2214750019305207?via%3Dihub

Ensuring access to safe, effective, and affordable cannabis‐based medicines

British Journal of Clinical Pharmacology“Over the past decade, patients, families, and medical cannabis advocates have campaigned in many countries to allow patients to use cannabis preparations to treat the symptoms of serious illnesses that have not responded to conventional treatment.

Ideally, any medical use of a cannabinoid would involve practitioners prescribing an approved medicine produced to standards of Good Manufacturing Practice (GMP), the safety and effectiveness of which had been assessed in clinical trials. The prescriber would be fully acquainted with the patient’s medical history and well‐informed about the safety and efficacy of cannabinoid medicines and know the most appropriate formulations and dosages to use and how they should be used in combination with other medicines being used to treat the patient’s condition. Current medical use of cannabinoids falls short of these expectations and regulations.

There is reasonable evidence that some cannabinoids are superior to placebo in reducing symptoms of some medical conditions.

There are no short cuts in making quality‐controlled cannabis‐based medicines available to patients in ways that ensure that they are used safely and effectively. In the absence of industry interest in funding clinical trials, governments need to fund large, well‐designed clinical and clinical pharmacological studies that will enable cannabinoids to play a more evidence‐based role in modern clinical practice. In the meantime, the clinical pharmacology field needs to share high‐quality data on the safety, efficacy, and pharmacology of medical cannabinoids as it becomes available. This should be presented in ways that permit the information to be regularly updated and provide clinically useful guidance on how these medicines should be used.”

https://www.ncbi.nlm.nih.gov/pubmed/32128867

https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bcp.14242

The implications of late-life cannabis use on brain health: A mapping review and implications for future research.

Ageing Research Reviews“While medical and recreational cannabis use is becoming more frequent among older adults, the neurocognitive consequences of cannabis use in this age group are unclear. The aim of this literature review was to synthesize and evaluate the current knowledge on the association of cannabis use during older-adulthood with cognitive function and brain aging.

We reviewed the literature from old animal models and human studies while focusing on the link of middle- and old-age use of cannabis with cognition. The report highlights the gap in knowledge on cannabis use in late-life and cognitive health, and discusses the limited findings in the context of substantial changes in attitudes and policies. Furthermore, we outline possible theoretical mechanisms and propose recommendations for future research.

The limited evidence on this important topic suggests that use in older ages may not be linked with poorer cognitive performance, thus detrimental effects of early-life cannabis use may not translate to use in older ages. Rather, use in old ages may be associated with improved brain health, in accordance with the known neuroprotective properties of several cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32109605

“Cannabis use in older ages may be associated with improved brain health.”

https://www.sciencedirect.com/science/article/pii/S1568163719303204?via%3Dihub

Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology.

Image result for frontiers in neurology“Microglia, the resident immune cells of the central nervous system, mediate brain homeostasis by controlling neuronal proliferation/differentiation and synaptic activity. In response to external signals from neuropathological conditions, homeostatic (M0) microglia can adopt one of two activation states: the classical (M1) activation state, which secretes mediators of the proinflammatory response, and the alternative (M2) activation state, which presumably mediates the resolution of neuroinflammation and tissue repair/remodeling.

Since chronic inflammatory activation of microglia is correlated with several neurodegenerative diseases, functional modulation of microglial phenotypes has been considered as a potential therapeutic strategy.

The endocannabinoid (eCB) system, composed of cannabinoid receptors and ligands and their metabolic/biosynthetic enzymes, has been shown to activate anti-inflammatory signaling pathways that modulate immune cell functions. Growing evidence has demonstrated that endogenous, synthetic, and plant-derived eCB agonists possess therapeutic effects on several neuropathologies; however, the molecular mechanisms that mediate the anti-inflammatory effects have not yet been identified.

Over the last decade, it has been revealed that the eCB system modulates microglial activation and population. In this review, we thoroughly examine recent studies on microglial phenotype modulation by eCB in neuroinflammatory and neurodegenerative disease conditions.

We hypothesize that cannabinoid 2 receptor (CB2R) signaling shifts the balance of expression between neuroinflammatory (M1-type) genes, neuroprotective (M2-type) genes, and homeostatic (M0-type) genes toward the latter two gene expressions, by which microglia acquire therapeutic functionality.”

https://www.ncbi.nlm.nih.gov/pubmed/32117037

https://www.frontiersin.org/articles/10.3389/fneur.2020.00087/full

Application of Cannabinoids in Neurosciences: Considerations and Implications.

 Current Issue Cover Image“Medicinal cannabinoid use continues to evolve across the United States, although legitimate federal recognition for medicinal purpose is lacking. Variability exists across states within the United States with respect to legislation, and health care institutions encounter challenges when patients present with a history of medicinal cannabinoid use. Emerging evidence in the field of neurosciences suggests a role of cannabinoids for neurologic medical conditions such as Parkinson disease, multiple sclerosis, and epilepsy. We aim to provide an overview of cannabinoids including a historical perspective, pharmacology, applications in neurosciences, and challenges in health care and academia. Knowledge of the appropriate role of cannabinoids in the clinical setting is essential for all health care practitioners including nursing.”

https://www.ncbi.nlm.nih.gov/pubmed/32084064

https://journals.lww.com/ccnq/Abstract/2020/04000/Application_of_Cannabinoids_in_Neurosciences_.9.aspx

Localization of cannabinoid and cannabinoid related receptors in the cat gastrointestinal tract.

Image result for Histochem Cell Biol journal “A growing body of literature indicates that activation of cannabinoid receptors may exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity.

The present study aimed to immunohistochemically investigate the distribution of the canonical cannabinoid receptors CB1 (CB1R) and CB2 (CB2R) and the putative cannabinoid receptors G protein-coupled receptor 55 (GPR55), nuclear peroxisome proliferator-activated receptor alpha (PPARα), transient receptor potential ankyrin 1 (TRPA1), and serotonin receptor 5-HT1a 5-HT1aR) in tissue samples of the gastrointestinal tract of the cat.

CB1R-immunoreactivity (CB1R-IR) was observed in gastric epithelial cells, intestinal enteroendocrine cells (EECs) and goblet cells, lamina propria mast cells (MCs), and enteric neurons. CB2R-IR was expressed by EECs, enterocytes, and macrophages. GPR55-IR was expressed by EECs, macrophages, immunocytes, and MP neurons. PPARα-IR was expressed by immunocytes, smooth muscle cells, and enteroglial cells. TRPA1-IR was expressed by enteric neurons and intestinal goblet cells. 5-HT1a receptor-IR was expressed by gastrointestinal epithelial cells and gastric smooth muscle cells.

Cannabinoid receptors showed a wide distribution in the feline gastrointestinal tract layers. Although not yet confirmed/supported by functional evidences, the present research might represent an anatomical substrate potentially useful to support, in feline species, the therapeutic use of cannabinoids during gastrointestinal inflammatory diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/32095931

Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes.

Scientific Reports “Cannabis research has historically focused on the most prevalent cannabinoids. However, extracts with a broad spectrum of secondary metabolites may have increased efficacy and decreased adverse effects compared to cannabinoids in isolation.

Cannabis’s complexity contributes to the length and breadth of its historical usage, including the individual application of the leaves, stem barks, and roots, for which modern research has not fully developed its therapeutic potential. This study is the first attempt to profile secondary metabolites groups in individual plant parts comprehensively.

We profiled 14 cannabinoids, 47 terpenoids (29 monoterpenoids, 15 sesquiterpenoids, and 3 triterpenoids), 3 sterols, and 7 flavonoids in cannabis flowers, leaves, stem barks, and roots in three chemovars available. Cannabis inflorescence was characterized by cannabinoids (15.77-20.37%), terpenoids (1.28-2.14%), and flavonoids (0.07-0.14%); the leaf by cannabinoids (1.10-2.10%), terpenoids (0.13-0.28%), and flavonoids (0.34-0.44%); stem barks by sterols (0.07-0.08%) and triterpenoids (0.05-0.15%); roots by sterols (0.06-0.09%) and triterpenoids (0.13-0.24%).

This comprehensive profile of bioactive compounds can form a baseline of reference values useful for research and clinical studies to understand the “entourage effect” of cannabis as a whole, and also to rediscover therapeutic potential for each part of cannabis from their traditional use by applying modern scientific methodologies.”

https://www.ncbi.nlm.nih.gov/pubmed/32094454

https://www.nature.com/articles/s41598-020-60172-6

Anti-inflammatory Potential of Terpenes Present in Cannabis sativa L.

Go to Volume 0, Issue 0 “Cannabis sativa L. (C. sativa) contains an array of plant-derived (phyto) cannabinoids and terpenes that are predominantly located in the trichome cavity of the plant. Terpenes, aromatic organic hydrocarbons characterized for their role in plant protection/pollination, are gaining attention for their potential as novel therapeutics in many areas of biomedicine. This Viewpoint will explore the exciting recent evidence that terpenes have anti-inflammatory/antioxidant propensity by targeting inflammatory signaling mechanisms relevant to human disease. Given their anti-inflammatory properties, terpenes may contribute to the effects of current cannabinoid-based therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/32091871

https://pubs.acs.org/doi/10.1021/acschemneuro.0c00075