Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes.

Scientific Reports “Cannabis research has historically focused on the most prevalent cannabinoids. However, extracts with a broad spectrum of secondary metabolites may have increased efficacy and decreased adverse effects compared to cannabinoids in isolation.

Cannabis’s complexity contributes to the length and breadth of its historical usage, including the individual application of the leaves, stem barks, and roots, for which modern research has not fully developed its therapeutic potential. This study is the first attempt to profile secondary metabolites groups in individual plant parts comprehensively.

We profiled 14 cannabinoids, 47 terpenoids (29 monoterpenoids, 15 sesquiterpenoids, and 3 triterpenoids), 3 sterols, and 7 flavonoids in cannabis flowers, leaves, stem barks, and roots in three chemovars available. Cannabis inflorescence was characterized by cannabinoids (15.77-20.37%), terpenoids (1.28-2.14%), and flavonoids (0.07-0.14%); the leaf by cannabinoids (1.10-2.10%), terpenoids (0.13-0.28%), and flavonoids (0.34-0.44%); stem barks by sterols (0.07-0.08%) and triterpenoids (0.05-0.15%); roots by sterols (0.06-0.09%) and triterpenoids (0.13-0.24%).

This comprehensive profile of bioactive compounds can form a baseline of reference values useful for research and clinical studies to understand the “entourage effect” of cannabis as a whole, and also to rediscover therapeutic potential for each part of cannabis from their traditional use by applying modern scientific methodologies.”

https://www.ncbi.nlm.nih.gov/pubmed/32094454

https://www.nature.com/articles/s41598-020-60172-6

Anti-inflammatory Potential of Terpenes Present in Cannabis sativa L.

Go to Volume 0, Issue 0 “Cannabis sativa L. (C. sativa) contains an array of plant-derived (phyto) cannabinoids and terpenes that are predominantly located in the trichome cavity of the plant. Terpenes, aromatic organic hydrocarbons characterized for their role in plant protection/pollination, are gaining attention for their potential as novel therapeutics in many areas of biomedicine. This Viewpoint will explore the exciting recent evidence that terpenes have anti-inflammatory/antioxidant propensity by targeting inflammatory signaling mechanisms relevant to human disease. Given their anti-inflammatory properties, terpenes may contribute to the effects of current cannabinoid-based therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/32091871

https://pubs.acs.org/doi/10.1021/acschemneuro.0c00075

Cannabis and the exocannabinoid and endocannabinoid systems. Their use and controversies.

“Cannabis (marijuana) is one of the most consumed psychoactive substances in the world. The term marijuana is of Mexican origin. The primary cannabinoids that have been studied to date include cannabidiol and delta-9-tetrahydrocannabinol, which is responsible for most cannabis physical and psychotropic effects. Recently, the endocannabinoid system was discovered, which is made up of receptors, ligands and enzymes that are widely expressed in the brain and its periphery, where they act to maintain balance in several homeostatic processes. Exogenous cannabinoids or naturally-occurring phytocannabinoids interact with the endocannabinoid system. Marijuana must be processed in a laboratory to extract tetrahydrocannabinol and leave cannabidiol, which is the product that can be marketed. Some studies suggest cannabidiol has great potential for therapeutic use as an agent with antiepileptic, analgesic, anxiolytic, antipsychotic, anti-inflammatory and neuroprotective properties; however, the findings on cannabinoids efficacy and cannabis-based medications tolerability-safety for some conditions are inconsistent. More scientific evidence is required in order to generate recommendations on the use of medicinal cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/32091020

http://gacetamedicademexico.com/frame_eng.php?id=348

Quality of Life, Mental Health, Personality and Patterns of Use in Self-Medicated Cannabis Users with Chronic Diseases: A 12-Month Longitudinal Study.

Phytotherapy Research“The number of patients using cannabis for therapeutic purposes is growing worldwide. While research regarding the treatment of certain diseases/disorders with cannabis and cannabinoids is also expanding, only a few longitudinal studies have assessed the mid-term impacts of medical cannabis use on psychological variables and quality of life (QoL).

The aim of the study was to assess the psychological safety and QoL of patients with chronic diseases who self-medicate with cannabis over time.

We recruited patients with various chronic diseases who use cannabis and collected data regarding patterns of cannabis use as well as mental health, personality and QoL. Participants were followed-up at baseline, 4, 8 and 12 months. Hair analysis was conducted to confirm the presence of cannabinoids. Personality assessment showed a consistent decrease in self-transcendence and self-directedness scores.

Neither cognitive nor psychopathological deterioration was found. There were also no variations in QoL. Mid-term use of medical cannabis seems to show adequate tolerability regarding cognitive and psychopathological abilities, and it may help patients with chronic diseases to maintain an acceptable QoL.”

https://www.ncbi.nlm.nih.gov/pubmed/32083789

https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6639

Cannabinoid-mediated Modulation of Oxidative Stress and Early Inflammatory Response after Hypoxia-Ischemia.

ijms-logo“In the process of neonatal encephalopathy, oxidative stress and neuroinflammation have a prominent role after perinatal asphyxia. With the exception of therapeutic hypothermia, no therapeutic interventions are available in the clinical setting to target either the oxidative stress or inflammation, despite the high prevalence of neurological sequelae of this devastating condition.

The endocannabinoid system (ECS), recently recognized as a widespread neuromodulatory system, plays an important role in the development of the central nervous system (CNS).

This study aims to evaluate the potential effect of the cannabinoid (CB) agonist WIN 55,212-2 (WIN) on reactive oxygen species (ROS) and early inflammatory cytokine production after hypoxia-ischemia (HI) in fetal lambs.

Hypoxic-ischemic animals were subjected to 60 min of HI by partial occlusion of the umbilical cord. A group of lambs received a single dose of 0.01 μg/kg WIN, whereas non-asphyctic animals served as controls. WIN reduced the widespread and notorious increase in inflammatory markers tumor necrosis factor (TNF)-α and interleukin (IL)-1β and IL-6 induced by HI, a modulatory effect not observed for oxidative stress.

Our study suggests that treatment with a low dose of WIN can alter the profile of pro-inflammatory cytokines 3 h after HI.”

https://www.ncbi.nlm.nih.gov/pubmed/32074976

https://www.mdpi.com/1422-0067/21/4/1283

“Cannabinoid as a neuroprotective strategy in perinatal hypoxic-ischemic injury.”   https://www.ncbi.nlm.nih.gov/pubmed/21788999

Axially-Chiral Cannabinols: A New Platform for Cannabinoid-Inspired Drug Discovery.

Publication cover image“Phytocannabinoids (and synthetic analogs thereof) are gaining significant attention as promising leads in modern medicine. Considering this, new directions for the design of phytocannabinoid-inspired molecules is of immediate interest. In this regard, we have hypothesized that axially-chiral-cannabinols (ax-CBNs), unnatural and unknown isomers of cannabinol (CBN) may be valuable scaffolds for cannabinoid-inspired drug discovery. There are two main factors directing our interest to these scaffolds: (a) ax-CBNs would have ground-state three-dimensionality; ligand-receptor interactions can be more significant with complimentary 3D-topology, and (b) ax-CBNs at their core structure are biaryl molecules, generally attractive platforms for pharmaceutical development due to their ease of functionalization and stability. Herein we report a synthesis of ax-CBNs, examine physical properties experimentally and computationally, and perform a comparative analysis of ax-CBN and THC in mice behavioral studies.”

https://www.ncbi.nlm.nih.gov/pubmed/32061146

https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.202000025

Comparison of Efficacy of Cannabinoids versus Commercial Oral Care Products in Reducing Bacterial Content from Dental Plaque: A Preliminary Observation.

Image result for cureus journal“Dental plaque is a complex biofilm that gets formed on the teeth and acts as a reservoir of different microbes. It is the root cause for the occurrence of several dental problems and diseases, including cavities, bad breath, bleeding gums, tooth decay, and tooth loss. Therefore, it should be regularly removed using suitable oral care aids.

The present study compared the efficacy of oral care products and cannabinoids in reducing the bacterial content of dental plaques.

Sixty adults aged 18 to 45 years were categorized into six groups based on the Dutch periodontal screening index. Dental plaques of the adults were collected using paro-toothpick sticks and spread on two Petri dishes, each with four divisions. On Petri dish-A, cannabidiol (CBD), cannabichromene (CBC), cannabinol (CBN), and cannabigerol (CBG) were used, and on Petri dish-B, cannabigerolic acid (CBGA), Oral B, Colgate, and Cannabite F (a toothpaste formulation of pomegranate and algae) were used. The Petri dishes were sealed and incubated, followed by counting the number of colonies.

Results: By evaluating the colony count of the dental bacteria isolated from six groups, it was found that cannabinoids were more effective in reducing the bacterial colony count in dental plaques as compared to the well-established synthetic oral care products such as Oral B and Colgate.

Conclusion: Cannabinoids have the potential to be used as an effective antibacterial agent against dental plaque-associated bacteria. Moreover, it provides a safer alternative for synthetic antibiotics to reduce the development of drug resistance.”

https://www.ncbi.nlm.nih.gov/pubmed/32038896

“To the best of our knowledge, no such study has been published that compares the efficiency of cannabinoids with that of oral care products against dental bacteria. Our study is the first of its kind conducted to compare the efficacy of well-established commercial oral care products and cannabinoids in reducing the bacterial content of the dental plaque. Reducing the bacterial content could significantly decrease and prevent gum diseases that have become a huge global burden owing to their direct relation with systemic diseases. Here we report a preliminary observatory study on effect of cannabinoids on reducing the bacterial content of dental plaque.”

https://www.cureus.com/articles/25300-comparison-of-efficacy-of-cannabinoids-versus-commercial-oral-care-products-in-reducing-bacterial-content-from-dental-plaque-a-preliminary-observation

Abrupt withdrawal of cannabidiol (CBD): A randomized trial.

Cover image volume 103, Issue “The rationale of this study was to assess occurrence of withdrawal symptoms induced by abrupt cessation of cannabidiol (CBD) after prolonged administration in healthy volunteers.

CONCLUSION:

In healthy volunteers, no evidence of withdrawal syndrome was found with abrupt discontinuation of short-term treatment with CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/32036242

“There was no evidence of a physical withdrawal syndrome after abrupt cessation of CBD.”

https://www.epilepsybehavior.com/article/S1525-5050(19)31116-3/fulltext

Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa” https://www.ncbi.nlm.nih.gov/pubmed/19690824

Endocannabinoids as Therapeutic Targets.

Archives of Medical Research“Most of the drugs of abuse affect the brain by interacting with naturally expressed molecular receptors. Marihuana affects a series of receptors including cannabinoid receptor 1 (CB1R) and CB2R, among others. Endogenous molecules with cannabinoid activity interact with these receptors naturally. Receptors, ligands, synthesizing and degrading enzymes, as well as transporters, have been described.

This endocannabinoid system modulates behaviors and physiological processes, i.e. food intake, the sleep-waking cycle, learning and memory, motivation, and pain perception, among others. The rather broad distribution of endocannabinoids in the brain explains the different effects marihuana induces in its users. However, this very same anatomical and physiological distribution makes this system a useful target for therapeutic endeavors.

In this review, we briefly discuss the potential of small molecules that target the endocannabinoids as therapeutic tools to improve behaviors and treat illnesses. We believe that under medical supervision, endocannabinoid targets offer new advantages for patients for controlling multiple medical disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/32028095

https://www.sciencedirect.com/science/article/abs/pii/S0188440919304746?via%3Dihub

Uncovering the hidden antibiotic potential of Cannabis.

 Go to Volume 0, Issue ja“The spread of antimicrobial resistance continues to be a priority health concern worldwide, necessitating exploration of alternative therapies.

Cannabis sativa has long been known to contain antibacterial cannabinoids, but their potential to address antibiotic resistance has only been superficially investigated.

Here, we show that cannabinoids exhibit antibacterial activity against MRSA, inhibit its ability to form biofilms and eradicate pre-formed biofilms and stationary phase cells persistent to antibiotics.

We show that the mechanism of action of cannabigerol is through targeting the cytoplasmic membrane of Gram-positive bacteria and demonstrate in vivo efficacy of cannabigerol in a murine systemic infection model caused by MRSA.

We also show that cannabinoids are effective against Gram-negative organisms whose outer membrane is permeabilized, where cannabigerol acts on the inner membrane.

Finally, we demonstrate that cannabinoids work in combination with polymyxin B against multi-drug resistant Gram-negative pathogens, revealing the broad-spectrum therapeutic potential for cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32017534

https://pubs.acs.org/doi/10.1021/acsinfecdis.9b00419