Beyond THC and Endocannabinoids.

Image result for AR Annual Reviews“Research in the cannabinoid field, namely on phytocannabinoids, the endogenous cannabinoids anandamide and 2-arachidonoyl glycerol and their metabolizing and synthetic enzymes, the cannabinoid receptors, and anandamide-like cannabinoid compounds, has expanded tremendously over the last few years. Numerous endocannabinoid-like compounds have been discovered. The Cannabis plant constituent cannabidiol (CBD) was found to exert beneficial effects in many preclinical disease models ranging from epilepsy, cardiovascular disease, inflammation, and autoimmunity to neurodegenerative and kidney diseases and cancer. CBD was recently approved in the United States for the treatment of rare forms of childhood epilepsy. This has triggered the development of many CBD-based products for human use, often with overstated claims regarding their therapeutic effects. In this article, the recently published research on the chemistry and biological effects of plant cannabinoids (specifically CBD), endocannabinoids, certain long-chain fatty acid amides, and the variety of relevant receptors is critically reviewed. ”

https://www.ncbi.nlm.nih.gov/pubmed/31580774

https://www.annualreviews.org/doi/10.1146/annurev-pharmtox-010818-021441

Neuroprotective protein hydrolysates from hemp (Cannabis sativa L.) seeds.

 “Hemp (Cannabis sativa L.) seeds are well known for their potential use as a source of nutrients, fiber, and bioactive compounds.

A hemp protein isolate, prepared from defatted hemp flour, was hydrolyzed by alcalase and flavourzyme under specific conditions.

The resulting hydrolysates were evaluated for the selection of potentially bioactive hemp protein hydrolysates (HPHs) owing to their DPPH scavenging and ferric reducing antioxidant power activity. In vitro cell-free experiments led to the identification of two bioactive HPHs, HPH20A and HPH60A + 15AF, which were used at 50 and 100 μg mL-1 on BV-2 microglial cells in order to evaluate the anti-neuroinflammatory activities.

Our results showed that HPH20A and HPH60A + 15AF down-regulated TNF-α, IL-1β, and IL-6 mRNA transcriptional levels in LPS-stimulated BV-2 microglial cells. In addition, HPH20A and HPH60A + 15AF up-regulated the gene expression of anti-inflammatory cytokine IL-10.

This study suggests for the first time that HPHs may improve the neuroinflammatory and inflammatory states, supporting the nutraceutical value of hemp seeds.”

https://www.ncbi.nlm.nih.gov/pubmed/31576391

https://pubs.rsc.org/en/content/articlelanding/2019/FO/C9FO01904A#!divAbstract

Absence of Entourage: Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Functional Activity of Δ9-THC at Human CB1 and CB2 Receptors.

 View details for Cannabis and Cannabinoid Research cover image“Compounds present in Cannabis sativa such as phytocannabinoids and terpenoids may act in concert to elicit therapeutic effects. Cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) directly activate cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2); however, it is not known if terpenoids present in Cannabis also affect cannabinoid receptor signaling. Therefore, we examined six common terpenoids alone, and in combination with cannabinoid receptor agonists, on CB1 and CB2 signaling in vitro.

Results: α-Pinene, β-pinene, β-caryophyllene, linalool, limonene, and β-myrcene (up to 30-100 μM) did not change membrane potential in AtT20 cells expressing CB1 or CB2, or affect the response to a maximally effective concentration of the synthetic cannabinoid CP55,940. The presence of individual or a combination of terpenoids did not affect the hyperpolarization produced by Δ9-THC (10 μM): (CB1: control, 59%±7%; with terpenoids (10 μM each) 55%±4%; CB2: Δ9-THC 16%±5%, with terpenoids (10 μM each) 17%±4%). To investigate possible effect on desensitization of CB1 responses, all six terpenoids were added together with Δ9-THC and signaling measured continuously over 30 min. Terpenoids did not affect desensitization, after 30 min the control hyperpolarization recovered by 63%±6% in the presence of the terpenoids recovery was 61%±5%.

Discussion: None of the six of the most common terpenoids in Cannabis directly activated CB1 or CB2, or modulated the signaling of the phytocannabinoid agonist Δ9-THC. These results suggest that if a phytocannabinoid-terpenoid entourage effect exists, it is not at the CB1 or CB2 receptor level. It remains possible that terpenoids activate CB1 and CB2 signaling pathways that do not involve potassium channels; however, it seems more likely that they may act at different molecular target(s) in the neuronal circuits important for the behavioral effect of Cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/31559333

https://www.liebertpub.com/doi/10.1089/can.2019.0016

“Terpenoids and Phytocannabinoids Co-Produced in Cannabis Sativa Strains Show Specific Interaction for Cell Cytotoxic Activity. We found that in “high THC” or “high CBD” strains, phytocannabinoids are produced alongside certain sets of terpenoids. Only co-related terpenoids enhanced the cytotoxic activity of phytocannabinoids on MDA-MB-231 and HCT-116 cell lines. This was found to be most effective in natural ratios found in extracts of cannabis inflorescence.”  https://www.ncbi.nlm.nih.gov/pubmed/31438532

Human leukocytes differentially express endocannabinoid-glycerol lipases and hydrolyze 2-arachidonoyl-glycerol and its metabolites from the 15-lipoxygenase and cyclooxygenase pathways.

Publication cover image“2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties.

Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes.

Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), α/β-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs).

Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.”

https://www.ncbi.nlm.nih.gov/pubmed/31556464

https://jlb.onlinelibrary.wiley.com/doi/abs/10.1002/JLB.3A0919-049RRR

Opposed Cannabinoid 1 receptor (CB1R) expression in the prefrontal cortex vs. nucleus accumbens is associated with alcohol consumption in male rats.

Brain Research“Abusive alcohol consumption is a health problem, worldwide.

There is extensive literature indicating that cannabinoid 1 receptor (CB1R) plays a crucial role in mediating alcohol’s reward effects.

Maternal care deprivation (MCD) is a reliable rodent model of early life stress that leads to high levels of anxiety and alterations in motivation, which may increase vulnerability to alcohol consumption.

The present study researched whether anxiety-like behaviors and the level of motivation for a natural reward, and CB1R expression in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) can predict alcohol consumption in non-MCD and MCD male rats.

Results indicate that MCD increases anxiety-like behaviors, i.e., reduces time in open arms in the elevated plus maze and increases alcohol intake. In turn, the motivation for a palatable reward, i.e., a chocolate flavored pellet, was not affected by MCD.

MCD reduces CB1R expression in the PFC and increases it in the NAcc. Hence, both higher anxiety-like behaviors and higher CB1R expression in the NAcc and lower CB1R expression in the PFC are associated with higher alcohol intake.

These results suggest that early life adverse experiences induce a reprogramming of the brain’s endocannabinoid system that very likely contributes to making the brain vulnerable to develop alcohol abuse and dependence.”

https://www.ncbi.nlm.nih.gov/pubmed/31568767

https://www.sciencedirect.com/science/article/abs/pii/S0006899319305396?via%3Dihub

Molecular mechanism of TRPV2 channel modulation by cannabidiol.

eLife logo

“Transient receptor potential vanilloid 2 (TRPV2) plays a critical role in neuronal development, cardiac function, immunity, and cancer.

Cannabidiol (CBD), the non-psychotropic therapeutically active ingredient of Cannabis sativa, is an activator of TRPV2 and also modulates other transient receptor potential (TRP) channels.

We show that CBD interacts with TRPV2 through a hydrophobic pocket located between S5 and S6 helices of adjacent subunits, which differs from known ligand and lipid binding sites in other TRP channels. CBD-bound TRPV2 structures revealed that the S4-S5 linker plays a critical role in channel gating upon CBD binding. Additionally, nanodiscs permitted us to visualize two distinct TRPV2 apo states in a lipid environment.

Together these results provide a foundation to further understand TRPV channel gating, their divergent physiological functions, and to accelerate structure-based drug design.”

https://www.ncbi.nlm.nih.gov/pubmed/31566564

https://elifesciences.org/articles/48792

Childhood trauma and being at-risk for psychosis are associated with higher peripheral endocannabinoids.

Image result for Psychological Medicine “Evidence has been accumulating regarding alterations in components of the endocannabinoid system in patients with psychosis.

Of all the putative risk factors associated with psychosis, being at clinical high-risk for psychosis (CHR) has the strongest association with the onset of psychosis, and exposure to childhood trauma has been linked to an increased risk of development of psychotic disorder.

We aimed to investigate whether being at-risk for psychosis and exposure to childhood trauma were associated with altered endocannabinoid levels.

RESULTS:

Individuals with both CHR and experience of childhood trauma had higher N-palmitoylethanolamine (p < 0.001) and anandamide (p < 0.001) levels in peripheral blood compared to healthy controls (HC) and those with no childhood trauma. There was also a significant correlation between N-palmitoylethanolamine levels and symptoms as well as childhood trauma.

CONCLUSIONS:

Our results suggest an association between CHR and/or childhood maltreatment and elevated endocannabinoid levels in peripheral blood, with a greater alteration in those with both CHR status and history of childhood maltreatment compared to those with either of those risks alone. Furthermore, endocannabinoid levels increased linearly with the number of risk factors and elevated endocannabinoid levels correlated with the severity of CHR symptoms and extent of childhood maltreatment. Further studies in larger cohorts, employing longitudinal designs are needed to confirm these findings and delineate the precise role of endocannabinoid alterations in the pathophysiology of psychosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31422779

https://www.cambridge.org/core/journals/psychological-medicine/article/childhood-trauma-and-being-atrisk-for-psychosis-are-associated-with-higher-peripheral-endocannabinoids/BFFDA252EF2250C2F2B45786CC152CDC

N-Eicosapentaenoyl Dopamine, A Conjugate of Dopamine and Eicosapentaenoic Acid (EPA), Exerts Anti-inflammatory Properties in Mouse and Human Macrophages.

nutrients-logo“A large body of evidence suggests that dietary n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), contribute to a reduced inflammatory tone thereby lowering the risk for several chronic and degenerative diseases. Different mechanisms have been proposed to explain these anti-inflammatory effects, including those involving endocannabinoids and endocannabinoid-like molecules.

In this context, fatty acid amides (FAAs), conjugates of fatty acids with amines or amino acids, are an emerging class of compounds. Dopamine conjugates of DHA (N-docosahexaenoyl dopamine, DHDA) and EPA (N-eicosapentaenoyl dopamine, EPDA) have previously been shown to induce autophagy, apoptosis, and cell death in different tumor lines. Additionally, DHDA has displayed anti-inflammatory properties in vitro.

Here, we tested the immune-modulatory properties of EPDA in mouse RAW 264.7 and human THP-1 macrophages stimulated with lipopolysaccharide (LPS). EPDA suppressed the production of monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in both cell lines, and nitric oxide (NO), and macrophage-inflammatory protein-3α (MIP3A) in RAW 264.7 macrophages. At a transcriptional level, EPDA attenuated cyclooxygenase-2 (COX-2) expression in both cell lines and that of MCP-1, IL-6, and interleukin-1β (IL-1β) in THP-1 macrophages.

Although further research is needed to reveal whether EPDA is an endogenous metabolite, our data suggest that this EPA-derived conjugate possesses interesting immune-modulating properties.”

Stress and Western diets increase vulnerability to neuropsychiatric disorders: A common mechanism.

Publication Cover“In modern lifestyle, stress and Western diets are two major environmental risk factors involved in the etiology of neuropsychiatric disorders. Lifelong interactions between stress, Western diets, and how they can affect brain physiology, remain unknown.

A possible relation between dietary long chain polyunsaturated fatty acids (PUFA), endocannabinoids, and stress is proposed.

This review suggests that both Western diets and negative stress or distress increase n-6/n-3 PUFA ratio in the phospholipids of the plasma membrane in neurons, allowing an over-activation of the endocannabinoid system in the limbic areas that control emotions. As a consequence, an excitatory/inhibitory imbalance is induced, which may affect the ability to synchronize brain areas involved in the control of stress responses. These alterations increase vulnerability to neuropsychiatric disorders.

Accordingly, dietary intake of n-3 PUFA would counter the effects of stress on the brain of stressed subjects. In conclusion, this article proposes that PUFA, endocannabinoids, and stress form a unique system which is self-regulated in limbic areas which in turn controls the effects of stress on the brain throughout a lifetime.”

Novel Anti-inflammatory and Vasodilatory ω-3 Endocannabinoid Epoxide Regioisomers.

 “Accumulating evidence suggests that diets rich in ω-3 polyunsaturated fatty acids (PUFAs) offer protection against vascular inflammation, neuroinflammation, hypertension, and thrombosis.

Recently, biochemical studies have demonstrated that these benefits are partially mediated by their conversion to ω-3 endocannabinoid epoxide metabolites. These lipid metabolites originate from the epoxidation of ω-3 endocannabinoids, docosahexanoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) by cytochrome P450 (CYP) epoxygenases to form epoxydocosapentaenoic acid-ethanolamides (EDP-EAs) and epoxyeicosatetraenoic acid-ethanolamides (EEQ-EAs), respectively.

The EDP-EAs and EEQ-EAs are endogenously produced in rat brain and peripheral organs. Additionally, EDP-EAs and EEQ-EAs dose-dependently decrease pro-inflammatory IL-6 cytokine and increased anti-inflammatory IL-10 cytokine. Furthermore, the EEQ-EAs and EDP-EAs attenuate angiogenesis and cell migration in cancer cells, induce vasodilation in bovine coronary arteries, and reciprocally regulate platelet aggregation in washed human platelets.

Taken together, the ω-3 endocannabinoid epoxides represent a new class of dual acting molecules that display unique pharmacological properties.”

https://www.ncbi.nlm.nih.gov/pubmed/31562632

https://link.springer.com/chapter/10.1007%2F978-3-030-21735-8_17