“Cardiovascular disease (CVD) causes millions of deaths worldwide each year. Despite the great progress in therapies available for patients with CVD, some limitations, including drug complications, still exist. Hence, the endocannabinoid system (ECS) was proposed as a new avenue for CVDs treatment. The ECS components are widely distributed through the body, including the heart and blood vessels, thus the action of its endogenous and exogenous ligands, in particular, phytocannabinoids play a key role in various pathological states. The cardiovascular action of cannabinoids is complex as they affect vasculature and myocardium directly via specific receptors and exert indirect effects through the central and peripheral nervous system. The growing interest in phytocannabinoid studies, however, has extended the knowledge about their molecular targets as well as therapeutical properties; nonetheless, some areas of their actions are not yet fully recognized. Researchers have reported various cannabinoids, especially cannabidiol, as a promising approach to CVDs; hence, the purpose of this review is to summarize and update the cardiovascular actions of the most potent phytocannabinoids and the potential therapeutic role of ECS in CVDs, including ischemic reperfusion injury, arrhythmia, heart failure as well as hypertension.”
https://pubmed.ncbi.nlm.nih.gov/36636553/
“Accumulating evidence supports the crucial role of ECS in a wide range of physiological and pathophysiological conditions. In the cardiovascular system, ECS is involved in the inflammatory process, hemodynamic homeostasis, or cardiac rhythm control. Thus, it is not surprising that in many CVDs, ECS is highly active. Hence, pharmacological manipulation of the ECS, both by endocannabinoids and pCBs, may offer a novel therapeutic approach to cardiac disorders. Among many components of the Cannabis plant, studies on CBD demonstrate the greatest potential in experimental models of described herein CVDs. Although animal models and in vitro experiments have shown promising outcomes, data from human studies are still extremely limited and only these clinical trials may shed light on the actual therapeutic effect of CBD. Even though some effects of Cannabis compounds on the cardiovascular system are widely known, a thorough examination of their mechanism of action would greatly advance the understanding of pCBs. Molecular targets of Δ9-THC, CBG, CBC, CBN as well as THCV indicate their protective impact on the heart and blood vessels; nonetheless, the lack of in vitro, animal, or human studies creates a huge knowledge gap in this field.”