“We have previously shown that cannabinoids induce growth inhibition and apoptosis in prostate cancer PC-3 cells, which express high levels of cannabinoid receptor types 1 and 2 (CB1 and CB2). In this study, we investigated the role of CB2 receptor in the anti-proliferative action of cannabinoids and the signal transduction triggered by receptor ligation.
This study defines the involvement of CB2-mediated signalling in the in vivo and in vitro growth inhibition of prostate cancer cells and suggests that CB2 agonists have potential therapeutic interest and deserve to be explored in the management of prostate cancer.
Cannabinoids, the active components of Cannabis sativa and their derivatives, exert a wide spectrum of modulatory actions and pharmacological activities in the brain as well as in the periphery, and therefore, the therapeutic potential of cannabinoids has gained much attention during the past few years. One of the most exciting areas of current research in the therapeutic potential of cannabinoids is cancer.
Recent evidence suggests that cannabinoids are powerful regulators of cell growth and differentiation. They have been shown to exert anti-tumoural effects by decreasing viability, proliferation, adhesion and migration on various cancer cells, thereby suggesting the potential use of cannabinoids in the treatment of gliomas, prostate and breast cancers and malignancies of immune origin.
Overall, our data show a role for the cannabinoid receptor CB2 in the anti-tumour effect of cannabinoids on prostate cells in vitroand in vivo. There is considerable interest in the application of selective CB2 receptor agonists, which are devoid of typical marijuana-like psychoactive properties of CB1 agonists, for future cannabinoid-based anticancer therapies. Therefore, our findings point to the potential application of cannabinoid receptor type 2 ligands as anti-tumour agents in prostate cancer.”