“Endocannabinoids belong to a group of ester, ether and amide derivatives of fatty acids, which are endogenous ligands of receptors CB1, CB2, TRPV1 and GPR55 that are included in the endocannabinoid system of the animal organism. The best known endocannabinoids are: N-arachidonylethanolamide called anandamide (AEA) and 2-arachidonoylglycerol (2-AG). They occur in all organisms, and their highest level is observed in the brain. In this review the mechanisms of synthesis and degradation of both AEA and 2-AG are shown. Endocannabinoids are synthesized from phospholipids (mainly phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol) located in the cell membrane. As a result of arachidonic acid transfer from phosphatidylcholine to phosphatidylethanolamine, N-arachidonoyl phosphatidylethanolamine is formed, which is hydrolyzed to AEA by phospholipase D, C and A2. However, 2-AG is formed during the hydrolysis of phosphatidylinositol catalyzed mainly by DAGL. The primary role of endocannabinoids is the activation of cannabinoid receptors. Both AEA and 2-AG are primarily agonists of the CB1 receptor and to a lower degree CB2 and TRPV1r eceptors, but 2-AG has stronger affinity for these receptors. Through activation of receptors, endocannabinoids affect cellular metabolism and participate in the metabolic processes by receptor-independent pathways. Endocannabinoids which are not bound to the receptors are degraded. The main enzymes responsible for the hydrolysis of AEA and 2-AG are FAAH and MAGL, respectively. Apart from hydrolytic degradation, endocannabinoids may also be oxidized by cyclooxygenase-2, lipoxygenases, and cytochrome P450. It has been shown that the metabolites of both endocannabinoids also have biological significance.”