Maternal Prenatal Cannabis Use and Child Autism Spectrum Disorder

pubmed logo

“Importance: Despite an increase in maternal prenatal cannabis use and associations with adverse neonatal outcomes, research on child neurodevelopmental outcomes is limited.

Objective: To evaluate the association between maternal cannabis use in early pregnancy and child autism spectrum disorder (ASD).

Design, setting, and participants: This population-based retrospective birth cohort study included children born between 2011 and 2019 to pregnant Kaiser Permanente Northern California members screened for prenatal cannabis use during pregnancy. Statistical analysis was conducted February 2023 to March 2024.

Exposures: Maternal prenatal cannabis use was assessed at entrance to prenatal care (approximately 8- to 10-weeks’ gestation) via self-report and/or positive urine toxicology test. Use frequency was assessed.

Main outcomes and measures: Child ASD was defined by International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) diagnosis codes ascertained from the electronic health record. Associations between maternal prenatal cannabis use and child ASD were modeled using Cox proportional hazards regression adjusted for maternal sociodemographic, other substance use and disorders, prenatal care initiation, comorbidities, and clustering among maternal siblings.

Results: The study cohort included 178 948 singleton pregnancies among 146 296 unique pregnant individuals, including 48 880 (27.3%) Asian or Pacific Islander, 42 799 (23.9%) Hispanic, 9742 (5.4%) non-Hispanic Black, and 70 733 (39.5%) non-Hispanic White pregnancies. The median (IQR) maternal age at pregnancy onset was 31 (6) years; 8486 (4.7%) screened positive for cannabis use, 7054 (3.9%) via urine toxicology testing and 3662 (2.0%) by self-report. In the total study population, the frequency of self-reported use was monthly or less for 2003 pregnancies (1.1%), weekly for 918 pregnancies (0.5%), daily for 741 pregnancies (0.4%), and unknown for 4824 pregnancies (2.7%). ASD was diagnosed in 3.6% of children. After adjustment for maternal characteristics, maternal prenatal cannabis use was not associated with child ASD (hazard ratio [HR], 1.05; 95% CI, 0.84-1.32). When self-reported frequency of use was assessed, no statistically significant associations were observed after confounder adjustment. No sex-specific associations were documented (males: HR, 1.01; 95% CI, 0.77-1.32; and females: HR, 1.19; 95% CI, 0.77-1.85).

Conclusions and relevance: In this cohort study, maternal cannabis use assessed in early pregnancy was not associated with child ASD. Additional studies are needed to evaluate different patterns of use throughout pregnancy. Given the known adverse neonatal health effects of maternal prenatal cannabis use, clinicians should follow national guidelines and advise against use.”

https://pubmed.ncbi.nlm.nih.gov/39422906/

“Question  Is maternal cannabis use during early pregnancy associated with risk of child autism spectrum disorder (ASD)?

Findings  In this cohort study of 178 948 mother-child dyads, maternal prenatal cannabis use during early pregnancy was not associated with child ASD.

Meaning  These findings suggest that maternal cannabis use during early pregnancy was not associated with child ASD, but additional research should be conducted to replicate these findings.”

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2825075


Early Maternal Prenatal Cannabis Use and Child Developmental Delays

pubmed logo

“Importance: Maternal prenatal cannabis use is associated with adverse neonatal health effects, yet little is known about its association with child developmental outcomes.

Objective: To evaluate associations between maternal prenatal cannabis use in early pregnancy and child early developmental delays.

Design, setting, and participants: This cohort study included 119 976 children born to 106 240 unique individuals between January 2015 and December 2019 and followed up to aged 5.5 years or younger (through December 31, 2021) at Kaiser Permanente Northern California. Individuals were screened for prenatal cannabis use via self-report and urine toxicology at entrance into prenatal care (approximately 8- to 10-weeks’ gestation). Data were analyzed from February 2023 to March 2024.

Exposure: Maternal prenatal cannabis use defined as any use (self-reported or by urine toxicology testing) and use frequency.

Main outcomes: Early developmental delays (speech and language disorders, motor delays, global delays) in children up to age 5.5 years defined by International Statistical Classification of Diseases and Related Health Problems, Ninth Revision and Tenth Revision diagnoses codes ascertained from electronic health records.

Results: In this cohort of 119 976 pregnancies among 106 240 unique pregnant individuals, there were 29 543 Hispanic pregnancies (24.6%), 6567 non-Hispanic Black pregnancies (5.5%), 46 823 non-Hispanic White pregnancies (39.0%), 12 837 pregnancies (10.7%) to individuals aged 24 years or younger, and 10 365 pregnancies (8.6%) to individuals insured by Medicaid. Maternal prenatal cannabis use was documented for 6778 pregnancies (5.6%). Daily maternal prenatal cannabis use was reported for 618 pregnancies (0.5%), weekly for 722 pregnancies (0.6%), and monthly or less for 1617 pregnancies (1.3%). No association was observed between maternal prenatal cannabis use and child speech and language disorders (HR, 0.93; 95% CI, 0.84-1.03), global developmental delays (HR, 1.04; 95% CI, 0.68-1.59), or motor delays (HR, 0.86; 95% CI, 0.69-1.06). No association was detected between the frequency of maternal prenatal cannabis use and child early developmental delays.

Conclusions and relevance: In this cohort study, maternal prenatal cannabis use was not associated with an increased risk of child early developmental delays. Future research is needed to assess different patterns of cannabis use throughout pregnancy. Given the association between maternal prenatal cannabis use and other adverse outcomes, pregnant individuals should be educated on those risks.”

https://pubmed.ncbi.nlm.nih.gov/39422907/

 “Is maternal prenatal cannabis use during early pregnancy associated with child early developmental delays (ie, speech and language disorders, motor delays, global delays)?

Findings  In this cohort study of 119 976 mother-child dyads, maternal cannabis use during early pregnancy was not associated with child early developmental delays in children aged 5.5 years or younger.

Meaning  These findings suggest that maternal cannabis use in early pregnancy was not associated with an increased risk of child early developmental delays, but additional research on cannabis use throughout pregnancy, mode of administration, and product strength should be conducted.”

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2825076#google_vignette


Cannabinoids shift the basal ganglia miRNA m6A methylation profile towards an anti-inflammatory phenotype in SIV-infected Rhesus macaques

pubmed logo

“Epitranscriptomic modifications modulate diverse biological processes, such as regulation of gene expression, abundance, location and function. In particular, N6-methyladenosine (m6A) methylation has been shown to regulate various disease processes, including cancer and inflammation. While there is evidence that m6A modification is functionally relevant in neural development and differentiation, the role of m6A modification in HIV neuropathogenesis is unknown.

Here, we identified direct m6A modifications in miRNAs from BG tissues of Rhesus Monkeys (RMs) that were either vehicle-treated uninfected (VEH), SIV-infected combination anti-retroviral therapy (cART) treated (VEH/SIV/cART), or THC:CBD treated VEH/SIV/cART (THC:CBD/SIV/cART) RMs.

We detected m6A modifications across all BG tissues. SIV infection promoted an overall hypomethylated m6A profile. While the overall hypomethylated m6A profile was not significantly impacted by THC:CBD treatment, specific miRNAs, particularly those predicted to target proinflammatory genes showed markedly reduced m6A methylation levels compared to the VEH treated RMs. Additionally, we found that specific BG tissue miRNAs bearing m6A epi-transcriptomic marks were also transferred to BG-derived extracellular vesicles (EVs). Mechanistically, we identified the DRACH motif of the seed region of miR-194-5p to be significantly m6A hypomethylated, which was predicted to directly target STAT1, an important interferon-activated transcription factor known to drive neuroinflammation, in diseases ranging from Alzheimer to Parkinson and Huntington disease.

Notably, THC:CBD treatments significantly reduced m6A methylation of 43 miRNA species directly involved in regulating CNS network genes, thus providing a possible mechanist explanation on the beneficial effects of THC:CBD treatments noted in several disease involving neuroinflammation.

Our findings also underscore the need for investigating the qualitative, posttranscriptional modification changes in the RNA profiles along with the more traditional, qualitative alterations in pathological conditions or after various treatment regimens.”

https://pubmed.ncbi.nlm.nih.gov/39416016/

https://www.biorxiv.org/content/10.1101/2024.10.11.614514v1

Decoding the Therapeutic Potential of Cannabis and Cannabinoids in Neurological Disorders

pubmed logo

“For millennia, Cannabis sativa has served diverse roles, from medicinal applications to recreational use. Despite its extensive historical use, only a fraction of its components have been explored until recent times.

The therapeutic potential of Cannabis and its constituents has garnered attention, with suggestions for treating various conditions such as Parkinson’s disease, epilepsy, Alzheimer’s disease, and other Neurological disorders.

Recent research, particularly on animal experimental models, has unveiled the neuroprotective properties of cannabis. This neuroprotective effect is orchestrated through numerous G protein-coupled receptors (GPCRs) and the two cannabinoid receptors, CB1 and CB2.

While the capacity of cannabinoids to safeguard neurons is evident, a significant challenge lies in determining the optimal cannabinoid receptor agonist and its application in clinical trials. The intricate interplay of cannabinoids with the endocannabinoid system, involving CB1 and CB2 receptors, underscores the need for precise understanding and targeted approaches. Unravelling the molecular intricacies of this interaction is vital to harness the therapeutic potential of cannabinoids effectively.

As the exploration of cannabis components accelerates, there is a growing awareness of the need for nuanced strategies in utilizing cannabinoid receptor agonists in clinical settings. The evolving landscape of cannabis research presents exciting possibilities for developing targeted interventions that capitalize on the neuroprotective benefits of cannabinoids while navigating the complexities of receptor specificity and clinical applicability.”

https://pubmed.ncbi.nlm.nih.gov/39410886/

https://www.eurekaselect.com/article/143747

Cannabinoids and Genetic Epilepsy Models: A Review with Focus on CDKL5 Deficiency Disorder

pubmed logo

“Pediatric genetic epilepsies, such as CDKL5 Deficiency Disorder (CDD), are severely debilitating, with early-onset seizures occurring more than ten times daily in extreme cases. Existing antiseizure drugs frequently prove ineffective, which significantly impacts child development and diminishes the quality of life for patients and caregivers.

The relaxation of cannabis legislation has increased research into potential therapeutic properties of phytocannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC).

CBD’s antiseizure properties have shown promise, particularly in treating drug-resistant genetic epilepsies associated with Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and Tuberous Sclerosis Complex (TSC). However, specific research on CDD remains limited. Much of the current evidence relies on anecdotal reports of artisanal products lacking accurate data on cannabinoid composition. Utilizing model systems like patient-derived iPSC neurons and brain organoids allows precise dosing and comprehensive exploration of cannabinoids’ pharmacodynamics.

This review explores the potential of CBD, THC, and other trace cannabinoids in treating CDD and focusing on clinical trials and preclinical models to elucidate the cannabinoid’s potential mechanisms of action in disrupted CDD pathways and strengthen the case for further research into their potential as anti-epileptic drugs for CDD. This review offers an updated perspective on cannabinoid’s therapeutic potential for CDD.”

https://pubmed.ncbi.nlm.nih.gov/39409097/

https://www.mdpi.com/1422-0067/25/19/10768

Interplay between cannabinoids and the neuroimmune system in migraine

pubmed logo

“Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system.

In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids.

The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging.

Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.”

https://pubmed.ncbi.nlm.nih.gov/39407099/

“Overall, the intersection of cannabinoids and immune cells presents a promising but under-investigated strategy for innovative migraine treatments. Indeed, a major limitation in the current landscape of cannabinoid research for migraine is the limited number of published studies and clinical trials. This can partly be attributed to the schedule 1 classification of cannabis products in the US and the illegalization of cannabis world-wide. In the future, this problem should improve as recent legal changes have led to the (re)legalization of cannabis for medical purposes, and the consumption of cannabis products has increased.”

https://thejournalofheadacheandpain.biomedcentral.com/articles/10.1186/s10194-024-01883-3

The Modulatory Effects and Therapeutic Potential of Cannabidiol in the Gut

pubmed logo

“Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that exists in the Cannabis sativa plant.

CBD has been found to act on various receptors, including both cannabinoid and non-cannabinoid receptors. In addition, CBD has antioxidant effects that are independent of receptors. CBD has demonstrated modulatory effects at different organ systems, such as the central nervous system, immune system, and the gastrointestinal system. Due to its broad effects within the body and its safety profile, CBD has become a topic of therapeutic interest.

This literature review summarizes previous research findings with regard to the effect of CBD on the gastrointestinal (GI) system, including its effects at the molecular, cellular, organ, and whole-body levels. Both pre-clinical animal studies and human clinical trials are reviewed.

The results of the studies included in this literature review suggest that CBD has significant impact on intestinal permeability, the microbiome, immune cells and cytokines. As a result, CBD has been shown to have therapeutic potential for GI disorders such as inflammatory bowel disease (IBD).

Furthermore, through interactions with the gut, CBD may also be helpful in the treatment of disorders outside the GI system, such as non-alcoholic liver disease, postmenopausal disorders, epilepsy, and multiple sclerosis. In the future, more mechanistic studies are warranted to elucidate the detailed mechanisms of action of CBD in the gut. In addition, more well-designed clinical trials are needed to explore the full therapeutic potential of CBD on and through the gut.”

https://pubmed.ncbi.nlm.nih.gov/39404382/

“CBD has exhibited modulatory effects on both the intestinal barrier permeability and the gut microbiome. In addition, CBD has displayed therapeutic potential for the treatment of GI disorders such as IBD. Furthermore, CBD may produce therapeutic effects on diseases outside the GI system by regulating gut–liver, gut–bone, and gut–brain axes.”

https://www.mdpi.com/2073-4409/13/19/1618

Cannabiorcol as a novel inhibitor of the p38/MSK-1/NF-κB signaling pathway, reducing matrix metalloproteinases in osteoarthritis

pubmed logo

“Background: The bioactivity and potential medicinal applications of cannabiorcol, a lesser-known derivative of Cannabis sativa, require further investigation. Osteoarthritis (OA) is a chronic joint condition marked by gradual degradation of the cartilage and commonly associated with elevated levels of matrix metalloproteinases (MMPs). However, the influence of cannabiorcol on OA and its underlying mechanisms remains unclear.

Methods: In silico analysis investigated the key transcription factors that regulate MMP expression. A chondrocyte cell model [interleukin (IL)-1β and IL-1⍺-treated C20A4 cell line] was established and treated with cannabiorcol. Associated cytotoxicity was assessed using a WST-8 assay. A monoiodoacetate-induced OA rat model was established and treated with cannabiorcol. Protein translocation and transactivation analyses were conducted using immunofluorescence and dual-luciferase reporter assays, respectively. Western blotting and real-time PCR analyzed relevant markers to examine cannabiorcol’s effects on OA and its fundamental mechanisms.

Results: Cannabiorcol inhibits the expression of IL-1β-induced MMPs compared to other cannabis-related compounds. In silico analysis revealed that the nuclear factor-kappa β (NF-κβ) and mitogen-activated protein kinase (MAPK) pathways are associated with MMP expression as key regulators. In vitro, cannabiorcol inhibits the NF-κB and p38 MAPK pathways independently cannabinoid receptors and transient receptor potential vanilloids. In vivo, cannabiorcol reduces MMP expression and ameliorates monoiodoacetate-induced OA traits in rats.

Conclusion: Cannabiorcol inhibits IL-1β-induced MMP expression in vitro and alleviates OA in an MIA-induced OA rat model by reducing MMP expression and inhibiting the p65/p38 axis.”

https://pubmed.ncbi.nlm.nih.gov/39405610/

“Phytocannabinoids are naturally occurring compounds found in Cannabis sativa that are being investigated as potential therapeutic agents for various diseases. Our findings offer new perspectives on cannabiorcol’s therapeutic potential for OA treatment. Our study demonstrates the potential therapeutic effects of cannabiorcol in OA by inhibiting MMP expression and attenuating inflammatory pathways such as NF-κB and p38 MAPK. Hence, cannabiorcol may represent a promising candidate for further investigation and development of OA treatments.”

https://www.sciencedirect.com/science/article/pii/S0944711324007980?via%3Dihub

Exploring the Potential of Synthetic Cannabinoids: Modulation of Biological Activity of Normal and Cancerous Human Colon Epithelial Cells

pubmed logo

“Colorectal cancer (CRC) is a global problem. Oncology currently practices conventional methods of treating this carcinoma, including surgery, chemotherapy, and radiotherapy. Unfortunately, their efficacy is low; hence, the exploration of new therapies is critical.

Recently, many efforts have focused on developing safe and effective anticancer compounds. Some of them include cannabinoids.

In the present study, we obtained cannabinoids, such as cannabidiol (CBD), abnormal cannabigerol (abn-CBG), cannabichromene (CBC), and cannabicitran (CBT), by chemical synthesis and performed the biological evaluation of their activity on colon cancer cells. In this study, we analyzed the effects of selected cannabinoids on the lifespan and metabolic activity of normal colonic epithelial cells and cancer colon cells.

This study demonstrated that cannabinoids can induce apoptosis in cancer cells by modulating mitochondrial dehydrogenase activity and cellular membrane integrity. The tested cannabinoids also influenced cell cycle progression. We also investigated the antioxidant activity of cannabinoids and established a relationship between the type of cannabinoid and nitric oxide (NO) production in normal and cancerous colon cells.

To conclude, it seems that, due to their interesting properties, the cannabinoids studied may constitute an interesting target for further research aimed at their use in alternative or combined therapies for human colon cancer.”

https://pubmed.ncbi.nlm.nih.gov/39404380/

“It seems that, due to their interesting properties, the cannabinoids studied may constitute an interesting target for further research, aimed at their use in alternative or combined therapies for human colon cancer.”

https://www.mdpi.com/2073-4409/13/19/1616

Prenatal Cannabis Use and Offspring Attention Deficit Hyperactivity Disorder and Disruptive Behavior Disorders: A Retrospective Cohort Study

pubmed logo

“Objective: To examine whether maternal cannabis use during early pregnancy is associated with offspring attention deficit hyperactivity disorder (ADHD) and disruptive behavior disorders (DBD).

Methods: We conducted a population-based retrospective birth cohort study of children (N = 141,570) born between 2011 and 2018 to pregnant individuals (N = 117,130) in Kaiser Permanente Northern California universally screened for any prenatal cannabis use at the entrance to prenatal care (at ∼8-10 wk gestation). Prenatal cannabis use was defined as (1) self-reported use and/or a positive toxicology test, (2) self-reported use, (3) a positive toxicology test, and (4) self-reported use frequency. Cox proportional hazards regression models adjusting for maternal characteristics (sociodemographics, other substance use and substance use disorders, prenatal care initiation, comorbidities) examined associations between prenatal cannabis use and offspring ADHD and DBD diagnosed by age 11 years.

Results: The sample of pregnant individuals was 27.2% Asian/Pacific Islander, 5.7% Black, 24.5% Hispanic, and 38.8% non-Hispanic White, with a mean (SD) age of 30.9 (5.2) years; 4.6% screened positive for any cannabis use (0.4% daily, 0.5% weekly, 1.1% monthly or less, 2.7% unknown frequency); 3.92% had a positive toxicology test and 1.8% self-reported use; 7.7% of offspring had ADHD and 6.8% had DBD. Maternal prenatal cannabis use was not associated with ADHD (adjusted hazard ratio [aHR]: 0.84, 95% CI, 0.70-1.01), and there was an inverse association with DBD (aHR: 0.83, 95% CI, 0.71-0.97), which remained when cannabis was defined by toxicology testing but not by self-report. Frequency of use was not associated with outcomes.

Conclusion: Maternal prenatal cannabis use was not associated with an increased risk of offspring ADHD or DBD.”

https://pubmed.ncbi.nlm.nih.gov/39400201/

https://journals.lww.com/jrnldbp/abstract/9900/prenatal_cannabis_use_and_offspring_attention.212.aspx