Full-spectrum extract from Cannabis sativa DKJ127 for chronic low back pain: a phase 3 randomized placebo-controlled trial

“Chronic low back pain (CLBP) affects over half a billion people worldwide. Current pharmacologic treatments offer limited efficacy and carry substantial risks, warranting the development of safe and effective alternatives.

This multicenter, randomized, placebo-controlled phase 3 trial evaluated the efficacy and safety of VER-01 in CLBP. It enrolled 820 adults with CLBP (VER-01, n = 394; placebo, n = 426) and included a double-blind 12-week treatment phase (phase A), a 6-month open-label extension (phase B), followed by either a 6-month continuation (phase C) or randomized withdrawal (phase D). The primary endpoint of phase A was a change in mean numeric rating scale (NRS) pain intensity, with a change in total neuropathic pain symptom inventory (NPSI) score as a key secondary endpoint in participants with a neuropathic pain component (PainDETECT > 18). The primary endpoint for phase D was time to treatment failure.

The study met its primary endpoint in phase A, with a mean pain reduction of -1.9 NRS points in the VER-01 group (mean difference (MD) versus placebo = -0.6, 95% confidence interval (CI) = -0.9 to -0.3; P < 0.001). Pain further decreased to -2.9 NRS points in phase B, with effects sustained through phase C.

The study also met its key secondary endpoint of phase A, with a mean NPSI decrease of -14.4 (standard error, 3.3) points from baseline in the VER-01 arm (MD versus placebo = -7.3, 95% CI = -13.2 to -1.3; P = 0.017). Although phase D did not meet its primary endpoint (hazard ratio = 0.75, 95% CI = 0.44-1.27; P = 0.288), pain increased significantly more with placebo upon withdrawal (MD = 0.5, 95% CI = 0.0-1.0; P = 0.034). In phase A, the incidence of adverse events-mostly mild to moderate and transient-was higher with VER-01 than with placebo (83.3% versus 67.3%; P < 0.001). VER-01 was well-tolerated, with no signs of dependence or withdrawal.

VER-01 shows potential as a new, safe and effective treatment for CLBP.”

https://pubmed.ncbi.nlm.nih.gov/41023483/

“In conclusion, this phase 3 study provides robust evidence supporting the efficacy and safety of VER-01 in the treatment of CLBP.”

https://www.nature.com/articles/s41591-025-03977-0

“Cannabis extract found to be effective for lower back pain” https://www.newscientist.com/article/2498064-cannabis-extract-found-to-be-effective-for-lower-back-pain/

Cannabidiol attenuates diet-induced metabolic endotoxemia, neuroinflammation, and anxiety-like behaviors in male aged rats

pubmed logo

“Obesity and aging synergistically reinforce neuroinflammation and disruption of homeostatic mechanisms, triggering pathological behaviors such as increased anxiety.

Cannabidiol (CBD) has been reported to exert anxiolytic, anti-inflammatory, and neuroprotective effects, supporting the hypothesis that it may attenuate the detrimental consequences of obesity, even in aged animals.

To test this hypothesis, 18-month-old male Wistar rats were divided into four experimental groups: control + vehicle (CT + vehicle), CT + CBD, cafeteria diet + vehicle (CAF + vehicle) and CAF + CBD. The animals were fed their diets for 8 weeks. Oral treatment with CBD (15 mg/kg/day) or vehicle began in the 9th week and continued until the end of the experiment, concurrently with the ongoing diet.

We found that the CAF increased anxiety-like behaviors in the open field and elevated plus maze tests, while CBD mitigated these behaviors in the open field. Obesogenic diet also increased circulating levels of lipopolysaccharide, which were reduced by CBD. In the prefrontal cortex, CAF increased levels of interleukin-6 (IL-6), which were decreased by CBD. Additionally, CBD reduced the expression of tumor necrosis factor-α (TNF-α) and toll-like receptor 4 (TLR4). CAF feeding also caused a reduction in the main endocannabinoids, 2-Arachidonoylglycerol (2-AG) and anandamide (AEA). In the prefrontal cortex, CAF increased transcripts of cannabinoid receptor 1 (CB1) and reduced those of cannabinoid receptor 2 (CB2) and serotonin receptor 5-Hydroxytryptamine receptor 1A (5-HT1A). Moreover, levels of triggering receptor expressed on myeloid cells 2 (TREM2) were reduced by the diet.

These findings support the notion that obesity, through its metabolic and inflammatory consequences, exacerbates neuroinflammation and contributes to the dysregulation of the endocannabinoid system in aged animals. Notably, CBD demonstrated the ability to attenuate inflammatory markers and improve anxiety-like behavior, suggesting its potential as a therapeutic strategy to counteract obesity-induced neurobiological alterations in aging.”

https://pubmed.ncbi.nlm.nih.gov/41022293/

“CBD reversed systemic and central inflammatory effects of obesity.”

https://linkinghub.elsevier.com/retrieve/pii/S0889159125003630

Cannabis sativa Root Extract Exerts Anti-Nociceptive and Anti-Inflammatory Effects via Endocannabinoid Pathway Modulation In Vivo and In Vitro

“Cannabis sativa root has traditionally been used to relieve pain and inflammation, but its pharmacological properties remain underexplored due to low levels of psychoactive cannabinoids.

This study aimed to investigate the anti-inflammatory and antinociceptive effects of the ethyl acetate fraction of Cannabis sativa root (CSREA) using in vivo rodent pain models. Mice were subjected to formalin and acetic acid-induced nociceptive tests, while rats were evaluated using a carrageenan-induced paw edema model.

CSREA significantly reduced pain-related behaviors in both early (0-10 min) and late phases (15-30 min) of the formalin test and decreased writhing responses in the acetic acid model. Notably, CSREA also improved survival rates following acetic acid injection. Inflammatory markers, including IL-6 and IL-1β, were significantly lowered in serum.

Furthermore, CSREA suppressed paw edema and redness in the carrageenan-induced rat model, demonstrating dose-dependent anti-inflammatory efficacy comparable to diclofenac. CSREA also downregulated pain-related gene expression (SCN9AASIC1ATACR1) and regulated key enzymes involved in endocannabinoid metabolism (FAAHMAGLDAGL), suggesting its role in the molecular modulation of pain pathways.

These effects are likely mediated via modulation of the endocannabinoid system, particularly by rebalancing the CB1R/CB2R ratio. The findings suggest that CSREA holds promise as a natural therapeutic agent for managing pain and inflammation and warrants further investigation into its molecular mechanisms and long-term effects.”

https://pubmed.ncbi.nlm.nih.gov/41009431/

“This study provides evidence for the in vivo analgesic and anti-inflammatory effects and underlying mechanism of CSREA in vitro. Our results from the formalin and writhing tests demonstrate that CSREA significantly reduced nociceptive pain-related behaviors and inflammatory cytokine levels indicating strong anti-nociceptive properties in a dose-dependent manner. In addition, CSREA markedly reduced paw edema in the carrageenan-induced rat model, suggesting its potential as a natural product with anti-inflammatory activity. These effects are likely mediated through modulation of the endocannabinoid system, particularly by altering cannabinoid levels as demonstrated in the in vitro model.”

https://www.mdpi.com/1422-0067/26/18/8863

Putative Effects of Lead on the Endocannabinoid System: A Literature Review and Summary

pubmed logo

“Lead is a naturally occurring metal found in numerous compounds used in everyday life. Toxicity from lead is a well-known public health problem. Its effects are implicated in multiple tissues, encompassing the gastrointestinal, renal, cardiovascular, and neurological systems.

Endocannabinoid receptors are involved in each of these systems, but the effects of lead on the receptors themselves are not well elucidated. In the neurological system, lead has varying interactions with neurotransmitters and downstream regulators implicated in neuronal transmissions influenced by endocannabinoid receptor function.

Lead’s effect is likely indirect on endocannabinoid receptor function; however, its influence on neuronal function is likely inhibitory to the receptor’s functioning. Lead has also been implicated in oxidative stress states, which would influence endocannabinoid receptors’ function.

The literature clearly supports lead having a negative impact on the overall function of endocannabinoid receptors, setting the stage for pathological states related to diminished neurosynaptic function and, in embryology, altered neuronal development, especially of the neural tube.”

https://pubmed.ncbi.nlm.nih.gov/41009561/

https://www.mdpi.com/1422-0067/26/18/8994

Investigating the Antimicrobial Efficacy of Cannabinoids and Their Derivatives Against Neisseria Gonorrhoeae by Computational Analysis

pubmed logo

“Neisseria gonorrhoeae is a Gram-negative diplococcus that causes gonorrhea through sexual contact. This ancient STD remains a major public health concern due to reproductive health impacts, antimicrobial resistance (AMR), and lack of a vaccine.

Cannabis sativa contains antibacterial cannabinoids, though its role in combating antibiotic resistance is underexplored. The 2Fe-2S iron-sulfur cluster protein is a potential antibiotic target, as these clusters are vital for bacterial proteins involved in electron transport, enzyme activity, and gene regulation. Disrupting them may impair bacterial survival and function.

In this investigation, the 2Fe-2S iron sulfur cluster binding domain-containing protein (NGFG_RS03485), identified as a potential therapeutic target from the core proteome of 12 Neisseria gonorrhoeae strains, was selected for this study. Potential antimicrobial agents were explored through molecular docking studies involving 16 cannabinoid analogs-9 obtained from literature sources and 7 identified via fingerprint similarity searches.

The study revealed that four cannabinoids form favorable bonds with active regions against our targeted protein; with a high binding affinity formed from the molecular docking; 1,3-Benzenediol, 2-[3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-, (1R-trans). Dronabinol, Cannabinolic acid A (CBNA), Cannabigerolic acid (CBGA), and Ferruginene C are derivatives identified. Drug-likeness assessments were conducted to evaluate the pharmacokinetic and toxicity properties of the cannabinoids and compared against the antibiotics.”

https://www.mdpi.com/2079-7737/14/9/1272

“Neisseria gonorrhoeae, the bacterium responsible for gonorrhoea, has developed increasing resistance to multiple antibiotics, making new treatment strategies urgently needed. This study explores the potential of cannabinoids and their derivatives as antimicrobial agents targeting N. gonorrhoeae.

Using computational methods, including molecular docking and fingerprint-based compound searches, the study identified five promising cannabinoid compounds with strong binding affinities to the 2Fe-2S iron–sulfur cluster binding domain-containing protein, a critical bacterial enzyme involved in electron transport and cellular function. These include 1,3-Benzenediol (a cannabidiol derivative), Ferruginene C, Dronabinol, Cannabinolic acid A (CBNA), and Cannabigerolic acid (CBGA). Their interactions were visualized using PyMOL and PLIP, revealing significant hydrogen bonding and hydrophobic interactions at active binding sites. Additionally, drug-likeness and pharmacokinetic assessments were performed, showing favorable absorption and low toxicity for several compounds compared to standard antibiotics.

Importantly, these cannabinoids showed potential to disrupt bacterial metabolic processes without inducing typical resistance pathways. The findings support further exploration of Phyto cannabinoids as natural alternatives for treating multidrug-resistant N. gonorrhoeae, with the 2Fe-2S cluster protein as a novel target. Further in vivo validation is recommended to confirm their therapeutic efficacy and safety.”

https://pubmed.ncbi.nlm.nih.gov/41007416/

Nanotechnology for the Efficacious Delivery of Medicinal Cannabis and Pharmaceutical Medicines

pubmed logo

“The application of nanoparticles as nanomedicines, particularly for the targeted and efficacious delivery of drugs is an expanding platform in the field of cannabinoid and pharmaceutical drug delivery. By refocusing the route of drug administration beyond the oral gut pathway, this technology provides significant advancements that are especially relevant for cancer treatments.

Orally administered drugs face significant challenges as they traverse the gastrointestinal tract (GIT) and are subject to first-pass GIT metabolism. Physiological conditions encountered in the GIT such as food effects, hormones, gastric pH, emptying time, and intestinal transit time vary widely across individuals. Fluid composition and enzymatic activity in the small intestine and large bowel also influence drug dissolution and absorption. These factors in conjunction with the intestinal cohort of bacteria can metabolize drugs before absorption, contributing to poor and variable drug bioavailability, which can be exacerbated by gut dysbiosis.

Drug delivery that bypasses the oral-GIT route and hence first-pass metabolism offers a plausible solution for enhanced safety and drug efficacy.”

https://pubmed.ncbi.nlm.nih.gov/41011252/

“Bypassing the first-pass metabolism in the gut is a fundamental and important characteristic of nanomedicines. It is thus possible to identify nanoparticles that form clear solutions in a stable aqueous matrix. Producing relatively insoluble drug components without altering their chemical structures is an important feature of nanomedicine drug delivery platforms.

These nanomedicines provide flexibility that allows the development of nanoparticle aqueous formulations of oro-mucosal, nasal, ocular, and transdermal products without the use of alcohol for enhanced delivery which bypasses the first-pass passage and metabolism of the GIT.”

https://www.mdpi.com/1424-8247/18/9/1385

Tetrahydrocannabivarin (THCV) Dose Dependently Blocks or Substitutes for Tetrahydrocannabinol (THC) in a Drug Discrimination Task in Rats

pubmed logo

“Delta-9-Tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid and structural analog of THC, exhibits a dual pharmacological profile as a CB1 receptor agonist/antagonist and a partial CB2 agonist. This study evaluated the effects of THCV in a THC discrimination model in rats. Male Sprague-Dawley rats (n = 16, 300-340 g, PND60) were trained under a fixed ratio 20 (FR20) schedule to discriminate THC (3 mg/kg) from vehicle. Substitution tests were conducted with THC (0.325-3 mg/kg), THCV (0.75-6 mg/kg), and THC-THCV combinations. THCV produced an inverted U-shaped substitution curve, significantly differing from vehicle (p = 0.008). At 3 mg/kg, THCV partially substituted for THC (54.6% ± 17.82, p = 0.003). Response rate significantly increased during the substitution test with 3 mg/kg of THCV (p = 0.042). THCV (6 mg/kg) reversed THC (0.75 mg/kg)-induced responding (p = 0.040), with no significant change in response rate (p = 0.247). However, THCV combined with THC (1.5 mg/kg) affected response rates (p = 0.012), with 6 mg/kg significantly reducing rates vs. 3 mg/kg (p = 0.013). Blood THC and 11-OH-THC levels remained unchanged when THC was combined with THCV. The findings suggest THCV can partially mimic or block THC’s discriminative effects in a dose-dependent manner, possibly acting as a partial CB1 agonist.”

https://pubmed.ncbi.nlm.nih.gov/41008636/

“Taken together, our findings highlight THCV’s unique pharmacological profile, characterized by partial agonism dose-dependent substitution for THC, and antagonism at higher doses. Importantly, THCV substituted for THC in a graded manner without evidence of pharmacokinetic interactions, and it also produced stimulant-like effects that distinguish it from THC. These results suggest that THCV may act as a dose-dependent modulator of cannabinoid receptor activity, capable of both mimicking and opposing THC’s discriminative stimulus effects. Such bidirectional properties are consistent with its complex receptor pharmacology and underscore the importance of dose in determining behavioral outcomes. Future studies should expand on these findings by examining sex- and strain-dependent variability, assessing the role of CB1 and CB2 receptor mechanisms using antagonist approaches, and exploring THCV’s actions across a broader range of behavioral paradigms, including those related to reward, cognition, and feeding behavior. Together, these efforts will help to clarify the pharmacology of THCV and further delineate its position within the cannabinoid spectrum.”

https://www.mdpi.com/2218-273X/15/9/1329

Cannabizetol, a Novel Cannabinoid: Chemical Synthesis, Anti-inflammatory Activity and Extraction from Cannabis sativa L

“We report the first isolation of a previously unknown cannabinoid, cannabizetol (CBGD, 7), from Cannabis sativa extracts, representing the third member of the rare class of methylene-bridged dimeric cannabinoids. The availability of a chemically synthesized standard was crucial for its unequivocal identification, thus confirming the natural occurrence of this new compound.

In addition to this structural discovery, we demonstrate that cannabizetol exhibits remarkable antioxidant and skin anti-inflammatory activity, significantly higher than that observed for the known dimeric cannabinoid cannabitwinol (CBDD, 6).

These results highlight cannabizetol as a promising bioactive metabolite with potential dermatological applications. To further enable its study, we developed a continuous flow approach to optimize the preparation of these dimers, achieving a substantial reduction in reaction times.”

https://pubmed.ncbi.nlm.nih.gov/40994228/

“Several cannabinoids have demonstrated biological activities, making Cannabis sativa particularly attractive as a source of potential medicinal active principles.”

https://pubs.acs.org/doi/10.1021/acs.jnatprod.5c00826

Cannabidiol attenuates heroin seeking in male rats associated with normalization of discrete neurobiological signatures within the nucleus accumbens with subregional specificity

pubmed logo

“Background: Opioid use disorder is a chronic relapsing condition characterized by cycles of compulsive drug use, abstinence, and relapse. Cannabidiol (CBD), a non-intoxicating cannabinoid, is under investigation as an anti-relapse treatment. CBD attenuates cue-induced heroin-seeking in a rodent model of relapse, and reduces craving and anxiety induced by drug-associated cues in abstinent individuals with heroin use disorder. The neurobiological mechanisms by which CBD may exert its anti-relapse effects are unknown.

Methods: The objective of the current study was to evaluate the effects of CBD administration on heroin-seeking behavior in conjunction with transcriptomic profiling in the nucleus accumbens core (NAcC) and shell (NAcS).

Results: Heroin-trained animals exhibited high levels of cue-induced heroin-seeking behavior. Importantly, CBD attenuated cue-induced heroin-seeking behaviors. Postmortem RNA-sequencing of the NAcC and NAcS revealed shared transcriptomic alterations the NAc subregions in response to heroin, with a more robust impact of heroin in the NAcS. Though CBD had minimal impact on the heroin-induced perturbations in the NAcC, it normalized components of the transcriptomic signature altered by heroin in both NAc subregions including transcripts that correlated with heroin-seeking behavior. In contrast, CBD normalized a particular subset of NAcS genes that correlated to heroin-seeking behavior. Those genes were specifically linked to the extracellular matrix, astrocyte function, and their upstream regulators related to immune function.

Conclusion: These findings underscore the NAc subregional signatures of heroin-induced neurobiological perturbations and provide novel biological targets relevant for CBD’s apparent anti-relapse effects.”

https://pubmed.ncbi.nlm.nih.gov/40992584/

https://linkinghub.elsevier.com/retrieve/pii/S0006322325014623

Cannabinoid treatment impacts adaptive behavior in autism patients and caregivers’ mental health: A prospective real-life cohort study

pubmed logo

“Introduction: Pharmacological interventions for behavioral symptoms of Autism Spectrum Disorder (ASD) are limited and recent studies point out benefits with the use of cannabinoids.

Method: This longitudinal observational study investigates ASD symptoms after 3 months of starting cannabidiol (CBD)-rich extract therapy and it’s impact on the mental health of caregivers. Assessment was based on clinical and socioeconomic questionnaire, Autism Treatment Evaluation Checklist (ATEC), Childhood Autism Rating Scale (CARS) and Vineland 3 Scale. The Brief Symptom Inventory (BSI) was applied to evaluate caregiver’s health.

Results: Sixteen patients with ASD who received cannabinoid treatment (CBD group) and seventeen patients with ASD without cannabinoid treatment (control group). CBD group was characterized as severe autism, ATEC total (SD) 85.5 ± 34.00, while controls as moderate, ATEC total (SD) 58.6 ± 25.53 (p = 0.047). After 3 months of treatment, CBD group showed a reduction in maladaptive behavior – internalizing (Vineland 3) (p = 0.008), and their caregivers a reduction in symptoms of Interpersonal Sensitivity (BSI) (p = 0.038), Global Severity Index (BSI) (p = 0.025) and Positive Symptom Distress Index (BSI) (p = 0.007), indicating reduction on mental health symptoms. For the control group, after 3 months there was a significant increase in scores for Daily Living Activities (Vineland 3) (p = 0.031) and Socialization (ATEC) (p = 0.037).

Conclusion: This study suggests that therapy with cannabidiol (CBD)-rich extract in severe ASD may have positive effects on anxious and depressive symptoms, potentially positively impacting on the mental health of their caregivers.”

https://pubmed.ncbi.nlm.nih.gov/40967683/

http://linkinghub.elsevier.com/retrieve/pii/S0079612325001311