Identification of Cannabidiolic and Cannabigerolic Acids as MTDL AChE, BuChE, and BACE-1 Inhibitors Against Alzheimer’s Disease by In Silico, In Vitro, and In Vivo Studies

pubmed logo

“Cannabidiolic (CBDA) and cannabigerolic (CBGA) acids are naturally occurring compounds from Cannabis sativa plant, previously identified by us as dual PPARα/γ agonists. Since the development of multitarget-directed ligands (MTDL) represents a valuable strategy to alleviate and slow down the progression of multifactorial diseases, we evaluated the potential ability of CBDA and CBGA to also inhibit enzymes involved in the modulation of the cholinergic tone and/or β-amyloid production.

A multidisciplinary approach based on computational and biochemical studies was pursued on selected enzymes, followed by behavioral and electrophysiological experiments in an AD mouse model. The β-arrestin assay on GPR109A and qPCR on TRPM7 were also carried out.

CBDA and CBGA are effective on both acetyl- and butyryl-cholinesterases (AChE/BuChE), as well as on β-secretase-1 (BACE-1) enzymes in a low micromolar range, and they also prevent aggregation of β-amyloid fibrils. Computational studies provided a rationale for the competitive (AChE) vs. noncompetitive (BuChE) inhibitory profile of the two ligands.

The repeated treatment with CBDA and CBGA (10 mg/kg, i.p.) improved the cognitive deficit induced by the β-amyloid peptide. A recovery of the long-term potentiation in the hippocampus was observed, where the treatment with CBGA and CBDA also restored the physiological expression level of TRPM7, a receptor channel involved in neurodegenerative diseases. We also showed that these compounds do not stimulate GPR109A in β-arrestin assay.

Collectively, these data broaden the pharmacological profile of CBDA and CBGA and suggest their potential use as novel anti-AD MTDLs.”

https://pubmed.ncbi.nlm.nih.gov/39510547/

“In summary, we have shown that both CBDA and CBGA are endowed with a multitarget ligand profile, acting not only as dual PPARα/γ agonists but also as inhibitors of both cholinesterase and BACE-1 enzymes, and molecular targets are currently used in the AD therapy to show down the cognitive impairment associated to the disease, thus providing a rationale for their in vivo activity.”

https://onlinelibrary.wiley.com/doi/10.1002/ptr.8369

Combinatorial effects of cannabinoid receptor 1 and 2 agonists on characteristics and proteomic alteration in MDA-MB-231 breast cancer cells

pubmed logo

“Breast cancer is the most common cancer diagnosed in women worldwide. However, the effective treatment for breast cancer progression is still being sought.

The activation of cannabinoid receptor (CB) has been shown to negatively affect breast cancer cell survival.

Our previous study also reported that breast cancer cells responded to various combinations of CB1 and CB2 agonists differently. Nonetheless, the mechanism underlying this effect and whether this phenomenon can be seen in other cancer characteristics remain unknown. Therefore, this study aims to further elucidate the effects of highly selective CB agonists and their combination on triple-negative breast cancer proliferation, cell cycle progression, invasion, lamellipodia formation as well as proteomic profile of MDA-MB-231 breast cancer cells.

The presence of CB agonists, specifically a 2:1 (ACEA: GW405833) combination, prominently inhibited colony formation and induced the S-phase cell cycle arrest in MDA-MB-231 cells. Furthermore, cell invasion ability and lamellipodia formation of MDA-MB-231 were also attenuated by the exposure of CB agonists and their 2:1 combination ratio. Our proteomic analysis revealed proteomic profile alteration in MDA-MB-231 upon CB exposure that potentially led to breast cancer suppression, such as ZPR1/SHC1/MAPK-mediated cell proliferation and AXL/VAV2/RAC1-mediated cell motility pathways.

Our findings showed that selective CB agonists and their combination suppressed breast cancer characteristics in MDA-MB-231 cells. The exposure of CB agonists also altered the proteomic profile of MDA-MB-231, which could lead to cell proliferation and motility suppression.”

https://pubmed.ncbi.nlm.nih.gov/39527598/

“Our study demonstrated that the presence of CB agonists hindered breast cancer cell growth, cell cycle progression, invasion through extracellular matrices and lamellipodia formation. The exposure of specific combination of CB1 and CB2 agonists also enhanced their breast cancer suppression effects. Moreover, breast cancer survival and motility-related proteins affected by the presence of these agonists suggesting the potential pathways underlying their effects were also depicted in this study.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312851

Cannabidiol (CBD) Protects Lung Endothelial Cells from Irradiation-Induced Oxidative Stress and Inflammation In Vitro and In Vivo

pubmed logo

“Objective: Radiotherapy, which is commonly used for the local control of thoracic cancers, also induces chronic inflammatory responses in the microvasculature of surrounding normal tissues such as the lung and heart that contribute to fatal radiation-induced lung diseases (RILDs) such as pneumonitis and fibrosis. In this study, we investigated the potential of cannabidiol (CBD) to attenuate the irradiation damage to the vasculature. 

Methods: We investigated the ability of CBD to protect a murine endothelial cell (EC) line (H5V) and primary lung ECs isolated from C57BL/6 mice from irradiation-induced damage in vitro and lung ECs (luECs) in vivo, by measuring the induction of oxidative stress, DNA damage, apoptosis (in vitro), and induction of inflammatory and pro-angiogenic markers (in vivo). 

Results: We demonstrated that a non-lethal dose of CBD reduces the irradiation-induced oxidative stress and early apoptosis of lung ECs by upregulating the expression of the cytoprotective mediator heme-oxygenase-1 (HO-1). The radiation-induced increased expression of inflammatory (ICAM-2, MCAM) and pro-angiogenic (VE-cadherin, Endoglin) markers was significantly reduced by a continuous daily treatment of C57BL/6 mice with CBD (i.p. 20 mg/kg body weight), 2 weeks before and 2 weeks after a partial irradiation of the lung (less than 20% of the lung volume) with 16 Gy. 

Conclusions: CBD has the potential to improve the clinical outcome of radiotherapy by reducing toxic side effects on the microvasculature of the lung.”

https://pubmed.ncbi.nlm.nih.gov/39518030/

“In this study, we demonstrate that cannabidiol (CBD), the non-psychogenic component of cannabis, mediates anti-inflammatory and anti-oxidative effects that protect the microvasculature of the lung against radiation-induced damage using in vitro and in vivo murine models. CBD therefore has the potential to improve the clinical outcome of radiotherapy by reducing normal tissue toxicity in the lung.”

https://www.mdpi.com/2072-6694/16/21/3589

Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents

pubmed logo

“Background: Glioblastoma multiforme (GBM) is an aggressive cancer with poor prognosis, partly due to resistance to the standard chemotherapy treatment, temozolomide (TMZ). Phytocannabinoid cannabidiol (CBD) has exhibited anti-cancer effects against GBM, however, CBD’s ability to overcome common resistance mechanisms to TMZ have not yet been investigated. 4′-Fluoro-cannabidiol (4′-F-CBD, or HUF-101/PECS-101) is a derivative of CBD, that exhibits increased activity compared to CBD during in vivo behavioural studies.

Methods: This anti-cancer activity of cannabinoids against GBM cells sensitive to and representing major resistance mechanisms to TMZ was investigated. Cannabinoids were also studied in combination with imidazotetrazine agents, and advanced mass spectrometry with the 3D OrbiSIMS was used to investigate the mechanism of action of CBD.

Results: CBD and 4′-F-CBD were found to overcome two major resistance mechanisms (methylguanine DNA-methyltransferase (MGMT) overexpression and DNA mismatch repair (MMR)-deficiency). Synergistic responses were observed when cells were exposed to cannabinoids and imidazotetrazine agents. Synergy increased with T25 and 4′-F-CBD. 3D OrbiSIMS analysis highlighted the presence of methylated-DNA, a previously unknown anti-cancer mechanism of action of CBD.

Conclusions: This work demonstrates the anti-cancer activity of 4′-F-CBD and the synergy of cannabinoids with imidazotetrazine agents for the first time and expands understanding of CBD mechanism of action.”

https://pubmed.ncbi.nlm.nih.gov/39516685/

https://www.nature.com/articles/s44276-024-00088-0

Targeting carbohydrate metabolism in colorectal cancer – synergy between DNA-damaging agents, cannabinoids, and intermittent serum starvation

pubmed logo

“Chemotherapy is a therapy of choice for many cancers. However, it is often inefficient for long-term patient survival and is usually accompanied by multiple adverse effects. The adverse effects are mainly associated with toxicity to normal cells, frequently resulting in immune system depression, nausea, loss of appetite and metabolic changes.

In this respect, the combination of chemotherapy with cannabinoids, especially non-psychoactive, such as cannabidiol, cannabinol and other minor cannabinoids, as well as terpenes, may become very useful. This is especially pertinent because the mechanisms of anticancer effects of cannabinoids on cancer cells are often different from conventional chemotherapeutics.

In addition, cannabinoids help alleviate chemotherapy-induced adverse effects, regulate sleep and appetite, and are shown to have analgesic properties. Another component for achieving potential anti-cancer synergism is regulating nutrient availability and metabolism by calorie restriction and intermittent fasting in cancer cells. As tumours require a lot of energy to grow and because glucose is constantly available, malignant cells often opt to use glucose as a primary source of ATP production through substrate-level phosphorylation (fermentation) rather than through oxidative phosphorylation. Thus, periodic depletion of cancer cells of primary fuel, glucose, could result in a strong synergy in killing cancer cells by chemo- and possibly radiotherapy when combined with cannabinoids. This commentary will discuss what is known about such combinatorial treatments, including potential mechanisms and future protocols.”

https://pubmed.ncbi.nlm.nih.gov/39534512/

https://www.oncoscience.us/article/611/text/

Case reports of identical twins with developmental and epileptic encephalopathy with STXBP1 gene mutations for whom different CBD supplementations were markedly effective

pubmed logo

“Cannabidiol (CBD) is a compound found specifically in the cannabis plant. Although a clinical trial for intractable epilepsy started in Japan in 2023, it is also available in the market as a dietary supplement. Herein, we report two cases of identical twins with developmental and epileptic encephalopathy with STXBP1 gene mutation who achieved seizure suppression through different regimens of CBD supplementation. The observation that different trace ingredients produced different effects in patients with identical genetic backgrounds is a crucial finding that has implications for the future regulation and clinical application of cannabinoid products.”

https://pubmed.ncbi.nlm.nih.gov/39534466/

https://www.sciencedirect.com/science/article/pii/S2589986424000777?via%3Dihub

Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer’s Disease

pubmed logo

“Alzheimer’s disease (AD) is a challenging medical issue that requires efficacious treatment options to improve long-term quality of life.

Cannabidiol (CBD) is a cannabis-derived phytocannabinoid with potential health benefits, including reports from our laboratory and others showing a therapeutic role in the pre-clinical treatment of AD; however, the mechanisms whereby CBD affects AD progression remain undefined.

Innate lymphoid cells (ILCs) are recently discovered immune cells that initiate and orchestrate inflammatory responses. ILC2, a sub-class of ILCs, is proposed to have a role in cognitive function via unknown mechanisms. In this present study, we explored whether CBD ameliorates AD symptoms via the enhancement of acetylcholine (ACh), a cholinergic neurotransmitter involved in cognition that may regulate ILC2. 5xFAD mice were chronically treated by inhalation of a formulation of broad-spectrum CBD for seven months. ACh production, ILC2s profile, brain histopathology, and long-term behavior were assessed.

Together, our studies showed that long-term inhalation of CBD improved cognitive function and reduced senile plaques in a murine AD model, effects that were associated with enhanced ACh production and altered ILC2s distribution within the CNS.

These findings indicate that inhaled CBD could offer a cost-effective, non-invasive, and effective treatment for managing AD. The beneficial effects of CBD inhalation may be linked to increased ACh production and an altered distribution of ILC2s, highlighting the need for further research in this area.”

https://pubmed.ncbi.nlm.nih.gov/39519315/

https://www.mdpi.com/1422-0067/25/21/11764

Efficiency of cannabis and cannabidiol in managing chronic pain syndromes: A comprehensive narrative review

pubmed logo

“Chronic pain affects up to 40% of adults, contributing to high medical expenses, the loss of productivity, reduced quality of life (QoL), and disability. Chronic pain requires detailed diagnostic assessment, treatment and rehabilitation, yet approx. 80% of patients report inadequate pain management.

As new treatment options are needed, we aimed to explore the effectiveness of medical cannabis-based products in managing chronic pain, with a particular focus on treatment patterns.

We searched the PubMed, Scopus and Web of Science databases using keywords related to cannabinoids and chronic pain syndromes. In total, 3,954 articles were identified, and 74 studies involving 12,562 patients were included. The effectiveness of cannabis-based products varied across studies.

Cannabinoids were most effective in treating chronic secondary headache and orofacial pain, chronic secondary musculoskeletal pain, chronic secondary visceral pain, and chronic neuropathic pain. Properly qualifying patients is the first crucial step in managing chronic pain, considering pain characteristics, comorbidities and other treatment options.

Treatment should start with low doses of cannabinoids, which are then increased to achieve the desired therapeutic effect while minimizing adverse effects.This narrative review revealed significant gaps in the evidence regarding precise treatment patterns, particularly for the long-term maintenance treatment needed by patients with chronic pain.

Medical cannabis can be considered an option for carefully selected patients with chronic pain syndromes when other treatment options fail to achieve an adequate response, and when the potential benefits outweigh the risks. However, there is still a need for well-designed clinical research to establish the long-term efficacy and safety of cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/39499191/

“Medical cannabis can be considered an option in carefully selected patients with chronic pain syndrome for the management of chronic pain when other treatment options fail to achieve an adequate response, and when potential benefits outweigh the risks. Patients with chronic secondary headache and orofacial pain, chronic secondary visceral pain, chronic secondary musculoskeletal pain, and chronic neuropathic pain can benefit more than other groups of patients experiencing chronic pain.”

https://dmp.umw.edu.pl/en/article/2024/61/5/765/

Cannabinoids for spasticity in patients with multiple sclerosis: A systematic review and meta-analysis

pubmed logo

“Background: One of the most disabling symptoms of patients with multiple sclerosis (MS) is spasticity which affects their quality of life. Nowadays, cannabinoids are used for spasticity control in patients with MS, while the efficacy and safety are not clearly understood. So, we designed this systematic review and meta-analysis to assess the efficacy of cannabinoids for controlling MS-related spasticity.

Methods: PubMed, Scopus, EMBASE, Web of Science, and Google Scholar were systematically searched by two independent researchers on 1 May 2023. They also searched gray literature (references of included studies, as well as conference abstracts).

Results: A literature search revealed 6552 records, 95 full-texts were evaluated, and finally, 31 studies remained for systematic review. Among included studies, six randomized trials were included. Nabiximols was the most commonly used medication for controlling MS-related spasticity. Mean Expanded Disability Status Scale ranged between 4.6 and 7. Most studies (17 studies) were done in Italy, followed by Germany (4 studies). The pooled standardized mean difference (SMD) of NRS (Numeric Rating Scale) (after-before) is estimated as -1.41 (95% confidence interval (CI): -1.65, -1.17) (I2 = 97%, p < 0.001). The pooled standardized mean difference (SMD) of Ashworth (after-before) is estimated as -0.39 (95% CI: -0.72, -0.06) (I2 = 69.9%, p = 0.005).

Conclusion: The results of this systematic review and meta-analysis showed that nabiximols was the most common cannabinoid which was used to control MS-related spasticity, and it was effective in controlling MS-related spasticity (significantly decreased SMD of NRS, and Ashworth after treatment).”

https://pubmed.ncbi.nlm.nih.gov/39502271/

“The results of this systematic review and meta-analysis showed that nabiximols was the most common cannabinoid which was used to control MS-related spasticity, and it was effective in controlling MS-related spasticity (significantly decreased SMD of NRS, and Ashworth after treatment).”

https://journals.sagepub.com/doi/10.1177/20552173241282379

Improved Therapeutic Efficacy of Doxorubicin Chemotherapy With Cannabidiol in 4T1 Mice Breast Cancer Model

pubmed logo

“Background: High dose chemotherapy is one of the therapeutic strategies for breast cancer and doxorubicin (DOX) as a chemotherapy agent is widely used. DOX indication is limited due to its dose-depended cardiotoxicity. Recently, cannabidiol (CBD) shows antitumoral and cardioprotective effects, so we hypothesized that CBD administration with high-dose DOX chemotherapy can improve anticancer activity and reduce cardiotoxic side effects.

Method: Mice breast cancer model established by injecting 4T1 cell lines. One group was not injected by 4T1 cells as a not cancerous group and received normal saline (NS, 0.1 mL). In cancerous groups, first group was considered as cancerous control and received NS (0.1 mL); the second group received CBD (5 mg/kg, IP) on Days 1,7, and 14; in the third group DOX (5 mg/kg, IV) as CBD schedule was administrated; the fourth group treated with CBD 1 day before DOX injection as pretreatment, and the last group was treated with CBD and DOX at same time with previous doses and schedules. On Day 21, all mice were sacrificed, heart and lungs tissues were obtained and histological sections were isolated. SOD2, iNOS, MMP2, MMP9 were evaluated through western blot and TUNEL test preformed for breast tumor.

Results: Tumor size and weight significantly decreased in DOX, pretreatment CBD + DOX and CBD + DOX groups. Administration of CBD with DOX could not prevent weight loss. TUNEL test demonstrated the highest tumor cell apoptosis in pretreatment CBD + DOX and CBD + DOX. In lungs belonged to CBD + DOX, there was not any sign of metastasis. Cardiac histopathological examination of pretreatment CBD + DOX and CBD + DOX did not show any sign of congestion or inflammation. In CBD + DOX SOD2 increased, also iNOS, MMP2, and MMP9 decreased compared to DOX.

Conclusions: This study demonstrated that simultaneous administration of CBD and DOX can increase antitumoral effect and reduce DOX cardiotoxicity. Nevertheless, CBD can induce cardiotoxicity as administrated alone.”

https://pubmed.ncbi.nlm.nih.gov/39503169/

“This study demonstrated the potent efficacy of cannabidiol in mouse breast cancer model with high-dose chemotherapy on the antitumor, anti-metastasis and cardioprotective roles against doxorubicin. Simultaneous administration of cannabidiol with high-dose doxorubicin not only improved the antitumor and anti-metastasis efficacy, but also could reduce cardiotoxicity by decreasing MMP2 and MMP9 and improving cardiac function by decreasing iNOS. Furthermore, cannabidiol could improve antioxidant system by increasing SOD2. Eventually, these findings demonstrated cannabidiol as a potential effective agent in coadministration with doxorubicin at the same time in improving anticancer effects and reducing cardiotoxicity.”

https://onlinelibrary.wiley.com/doi/10.1002/cam4.70395