Current cannabis use and pain management among US cancer patients

pubmed logo

“Background: National studies reporting the prevalence of cannabis use have focused on individuals with a history of cancer without distinction by their treatment status, which can impact symptom burden. While pain is a primary motivation to use cannabis in cancer, the magnitude of its association with cannabis use remains understudied.

Methods: We examined cannabis use and pain management among 5523 respondents of the Behavioral Risk Factor Surveillance System with a cancer history. Survey-weighted prevalence proportions of respondents’ cannabis use are reported, stratified on cancer treatment status. Regression models estimated odds ratios (ORs) and 95% confidence intervals (CIs) of cancer-related pain and cannabis use.

Results: Cannabis use was slightly more prevalent in those undergoing active treatment relative to those who were not undergoing active treatment (9.3% vs. 6.2%; P=0.05). Those under active treatment were more likely to use cannabis medicinally (71.6% vs. 50.0%; P=0.03). Relative to those without cancer-related pain, persons with pain under medical control (OR 2.1, 95% CI, 1.4-3.2) or uncontrolled pain were twice as likely to use cannabis (OR 2.0, 95% CI, 1.1-3.5).

Conclusions: Use of cannabis among cancer patients may be related to their treatment and is positively associated with cancer-related pain. Future research should investigate the associations of cannabis use, symptom burden, and treatment regimens across the treatment spectrum to facilitate interventions.”

https://pubmed.ncbi.nlm.nih.gov/38236449/

https://link.springer.com/article/10.1007/s00520-024-08321-9

Recreational and Medical Cannabis Legalization and Opioid Prescriptions and Mortality

pubmed logo

“Importance: While some have argued that cannabis legalization has helped to reduce opioid-related morbidity and mortality in the US, evidence has been mixed. Moreover, existing studies did not account for biases that could arise when policy effects vary over time or across states or when multiple policies are assessed at the same time, as in the case of recreational and medical cannabis legalization.

Objective: To quantify changes in opioid prescriptions and opioid overdose deaths associated with recreational and medical cannabis legalization in the US.

Design, setting, and participants: This quasiexperimental, generalized difference-in-differences analysis used annual state-level data between January 2006 and December 2020 to compare states that legalized recreational or medical cannabis vs those that did not.

Intervention: Recreational and medical cannabis law implementation (proxied by recreational and medical cannabis dispensary openings) between 2006 and 2020 across US states.

Main outcomes and measures: Opioid prescription rates per 100 persons and opioid overdose deaths per 100 000 population based on data from the US Centers for Disease Control and Prevention.

Results: Between 2006 and 2020, 13 states legalized recreational cannabis and 23 states legalized medical cannabis. There was no statistically significant association of recreational or medical cannabis laws with opioid prescriptions or overall opioid overdose mortality across the 15-year study period, although the results also suggested a potential reduction in synthetic opioid deaths associated with recreational cannabis laws (4.9 fewer deaths per 100 000 population; 95% CI, -9.49 to -0.30; P = .04). Sensitivity analyses excluding state economic indicators, accounting for additional opioid laws and using alternative ways to code treatment dates yielded substantively similar results, suggesting the absence of statistically significant associations between cannabis laws and the outcomes of interest during the full study period.

Conclusions and relevance: The results of this study suggest that, after accounting for biases due to possible heterogeneous effects and simultaneous assessment of recreational and medical cannabis legalization, the implementation of recreational or medical cannabis laws was not associated with opioid prescriptions or opioid mortality, with the exception of a possible reduction in synthetic opioid deaths associated with recreational cannabis law implementation.”

https://pubmed.ncbi.nlm.nih.gov/38241056/

https://jamanetwork.com/journals/jama-health-forum/fullarticle/2813866

Hemp Seed Cake Flour as a Source of Proteins, Minerals and Polyphenols and Its Impact on the Nutritional, Sensorial and Technological Quality of Bread

pubmed logo

“Hemp (Cannabis sativa L.) seeds contain a high concentration of proteins and biologically active compounds. The protein content is even higher in case of lipid part removal in oil production. The remaining part is considered a leftover, usually being used in animal feed. The aim of this study was to investigate the physicochemical composition of hemp seed cake flour, its nutritional quality and its impact on bread quality parameters. The properties of hemp seed cake flour were assessed in terms of protein quality, mineral composition, polyphenols and antioxidant activity.

Hemp seed cake proved to be an important source of high-quality protein (31.62% d.m.) with the presence of eight essential amino acids.

The biologically active potential of hemp seed cake has been demonstrated by the high content of polyphenols, especially those from the Cannabisin group. Hemp seed cake flour was incorporated in wheat flour at levels from 5 to 40% (w/w) to investigate its influence on bread quality parameters.

The addition of hemp seed cake flour increased the total phenol content of bread, thus greatly enhancing the antioxidant activity. The protein content of bread was found to be enhanced from 11.11% d.m (control sample) to 18.18% d.m (for sample with 40% hemp seed cake flour). On the other hand, the addition of hemp seed cake flour led to decreased bread porosity, increased hardness and decreased resilience in the seed cake. Although, all bread samples recorded sensorial attributes ranging between “slightly like” and “like it very much”.”

https://pubmed.ncbi.nlm.nih.gov/38231840/

“Hemp (Cannabis sativa L.) is a low-cost, unconventional feed resource with a unique phytochemical composition and various uses (pharmaceutical industry, food industry, etc)”

https://www.mdpi.com/2304-8158/12/23/4327

Alzheimer’s disease, aging, and cannabidiol treatment: a promising path to promote brain health and delay aging

pubmed logo

“Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss, neurodegeneration, and cognitive decline. Aging is one of the risk factors for AD. Although the mechanisms underlying aging and the incidence rate of AD are unclear, aging and AD share some hallmarks, such as oxidative stress and chronic inflammation.

Cannabidiol (CBD), the major non-psychoactive phytocannabinoid extracted from Cannabis sativa, has recently emerged as a potential candidate for delaying aging and a valuable therapeutic tool for the treatment of aging-related neurodegenerative diseases due to its antioxidant and anti-inflammation properties.

This article reviews the relevant literature on AD, CBD treatment for AD, cellular senescence, aging, and CBD treatment for aging in recent years. By analyzing these published data, we attempt to explore the complex correlation between cellular senescence, aging, and Alzheimer’s disease, clarify the positive feedback effect between the senescence of neurocytes and Alzheimer’s disease, and summarize the role and possible molecular mechanisms of CBD in preventing aging and treating AD.

These data may provide new ideas on how to effectively prevent and delay aging, and develop effective treatment strategies for age-related diseases such as Alzheimer’s disease.”

https://pubmed.ncbi.nlm.nih.gov/38227160/

https://link.springer.com/article/10.1007/s11033-023-09162-1

The Therapeutic Potential of Cannabidiol in Revolutionising Opioid Use Disorder Management

pubmed logo

“Opioid use disorder (OUD) is a significant cause of morbidity and mortality worldwide and is linked to a complex interplay of biopsychosocial factors as well as the increasing overprescription and availability of opioid medications. Current OUD management relies on the controlled provision of opioid medications, such as methadone or buprenorphine, known as opioid replacement therapy. There is variable evidence regarding the long-term efficacy of these medications in improving the management of OUD, thereby necessitating an exploration into innovative approaches to complement, or even take the place of, existing treatment paradigms.

Cannabidiol (CBD), a non-psychoactive compound derived from the cannabis plant, has garnered attention for its diverse pharmacological properties, including anti-inflammatory, analgesic, and anxiolytic effects. Preliminary studies suggest that CBD may target opioid withdrawal pathways that make CBD a potential therapeutic option for OUD.

This narrative review synthesises current literature surrounding OUD and offers a nuanced review of the current and future role of CBD in managing this condition. In doing so, we highlight the potential avenues to explore with respect to CBD research for the guidance and development of further research opportunities, framework and policy development, and clinical considerations before medicinal CBD can be integrated into evidence-based clinical guidelines.”

https://pubmed.ncbi.nlm.nih.gov/38226097/

https://www.cureus.com/articles/214898-the-therapeutic-potential-of-cannabidiol-in-revolutionising-opioid-use-disorder-management#!/

The impact of cannabis on non-medical opioid use among individuals receiving pharmacotherapies for opioid use disorder: a systematic review and meta-analysis of longitudinal studies

pubmed logo

“Background: The relationship between cannabis use and the risk of returning to using opioids non-medically during treatment for opioid use disorder (OUD) remains unclear.

Objective: We sought to quantify the impact of cannabis use on the risk of non-medical opioid use among people receiving pharmacotherapies for OUD.

Methods: A comprehensive search was performed using multiple databases from March 1 to April 5 of 2023. Eligible studies longitudinally assessed the association between cannabis use and non-medical opioid use among people with OUD receiving treatment with buprenorphine, methadone, or naltrexone. We utilized a random-effects model employing the restricted maximum likelihood method. A sensitivity analysis was conducted to understand potential differences between each OUD treatment modality.

Results: A total of 10 studies were included in the final meta-analysis. There were 8,367 participants (38% female). The average follow-up time across these studies was 9.7 months (SD = 3.77), ranging from 4 to 15 months. The pharmacotherapies involved were methadone (76.3%) buprenorphine (21.3%), and naltrexone (2.4%). The pooled odds ratio did not indicate that cannabis use significantly influenced non-medical opioid use (OR: 1.00, 95% CI: 0.97-1.04, p = .98). There is evidence of moderate heterogeneity and publication bias.

Conclusion: There was no significant association between cannabis use and non-medical opioid use among patients receiving pharmacotherapies for OUD. These findings neither confirm concerns about cannabis increasing non-medical opioid use during MOUD, nor do they endorse its efficacy in decreasing non-medical opioid use with MOUD.

This indicates a need for individualized approaches for cannabis use and challenges the requirement of cannabis abstinence to maintain OUD pharmacotherapies.”

https://pubmed.ncbi.nlm.nih.gov/38225727/

https://www.tandfonline.com/doi/full/10.1080/00952990.2023.2287406

The impact of cannabidiol placebo on responses to an acute stressor: A replication and proof of concept study

pubmed logo

“Background: Our group has previously reported that cannabidiol (CBD) expectancy alone blunts markers of stress, particularly during anticipation, but it is not clear the extent to which such findings were specific to the methods utilized.

Aims: To examine CBD-related placebo effects on stress reactivity and anticipation and to validate a protocol to be used in a neuroimaging study.

Methods: Forty-eight healthy adults (24 female) were randomly assigned to be informed that they ingested a CBD-containing oil or a CBD-free oil despite receiving the same oil (CBD-free). Following oil administration, participants engaged in a laboratory stressor and were then incorrectly informed that they would engage in a second more difficult task following a waiting period. Subjective state (sedation, energy, stress, anxiety) and heart rate were assessed at baseline, post-oil administration, immediately following the first stressor, and while anticipating the second stressor.

Results: Subjective stress and anxiety were significantly elevated immediately following the stressor (p-values < 0.001). CBD expectancy was associated with increased subjective sedation (p < 0.01) and tended to be associated with blunted subjective stress (p = 0.053). Post hoc within-condition pairwise compassions suggested a return to pre-stressor levels during the anticipation period in the CBD condition for subjective stress and anxiety (p = 0.784, 0.845), but not the CBD-free condition (p = 0.025, 0.045).

Conclusion: Results replicate and extend previous findings that CBD expectancy alone can impact stress- and anxiety-relevant responses in the laboratory context.”

https://pubmed.ncbi.nlm.nih.gov/38214314/

https://journals.sagepub.com/doi/10.1177/02698811231219060

A randomised phase II trial of temozolomide with or without cannabinoids in patients with recurrent glioblastoma (ARISTOCRAT): protocol for a multi-centre, double-blind, placebo-controlled trial

pubmed logo

“Background: Glioblastoma (GBM) is the most common adult malignant brain tumour, with an incidence of 5 per 100,000 per year in England. Patients with tumours showing O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation represent around 40% of newly diagnosed GBM. Relapse/tumour recurrence is inevitable. There is no agreed standard treatment for patients with GBM, therefore, it is aimed at delaying further tumour progression and maintaining health-related quality of life (HRQoL). Limited clinical trial data exist using cannabinoids in combination with temozolomide (TMZ) in this setting, but early phase data demonstrate prolonged overall survival compared to TMZ alone, with few additional side effects.

Jazz Pharmaceuticals (previously GW Pharma Ltd.) have developed nabiximols (trade name Sativex®), an oromucosal spray containing a blend of cannabis plant extracts, that we aim to assess for preliminary efficacy in patients with recurrent GBM.

Methods: ARISTOCRAT is a phase II, multi-centre, double-blind, placebo-controlled, randomised trial to assess cannabinoids in patients with recurrent MGMT methylated GBM who are suitable for treatment with TMZ. Patients who have relapsed ≥ 3 months after completion of initial first-line treatment will be randomised 2:1 to receive either nabiximols or placebo in combination with TMZ. The primary outcome is overall survival time defined as the time in whole days from the date of randomisation to the date of death from any cause. Secondary outcomes include overall survival at 12 months, progression-free survival time, HRQoL (using patient reported outcomes from QLQ-C30, QLQ-BN20 and EQ-5D-5L questionnaires), and adverse events.

Discussion: Patients with recurrent MGMT promoter methylated GBM represent a relatively good prognosis sub-group of patients with GBM. However, their median survival remains poor and, therefore, more effective treatments are needed. The phase II design of this trial was chosen, rather than phase III, due to the lack of data currently available on cannabinoid efficacy in this setting. A randomised, double-blind, placebo-controlled trial will ensure an unbiased robust evaluation of the treatment and will allow potential expansion of recruitment into a phase III trial should the emerging phase II results warrant this development.”

https://pubmed.ncbi.nlm.nih.gov/38225549/

“Phytocannabinoids occur naturally in cannabis plants and have been used medicinally for centuries for a variety of purposes . Δ9-tetrahydrocannabinol (THC) is the major psychoactive constituent in cannabis, and cannabidiol (CBD) the major non-psychoactive constituent.

In vivo studies have found that the administration of CBD and THC reduced tumour growth in animal models of glioma.

Jazz Pharmaceuticals (previously GW Pharma Ltd.) have developed nabiximols (trade name Sativex®), an oromucosal spray of a complex botanical mixture containing THC and CBD as the principal cannabinoids, with additional cannabinoid constituents and non-cannabinoid components.”

https://bmccancer.biomedcentral.com/articles/10.1186/s12885-023-11792-4

“Sativex is a standardized medication containing 2.5 mg/actuation CBD and 2.7 mg/ actuation THC.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836266/

Effectiveness of Medical Cannabis for the Treatment of Depression: A Naturalistic Outpatient Study

pubmed logo

“Background: There is a lack of studies on the course and effectiveness of medical cannabis in the treatment of major depressive disorder (MDD).

Methods: Retrospective longitudinal (18 weeks) study of n=59 outpatients with MDD, treated with medical cannabis via a telemedical platform. Previous treatment with antidepressant medication was required for inclusion into the study. Standardized data collection was carried out at entry and during monthly consultations. Severity of depression was measured on a 0-10 point rating scale. Side-effects were assessed by a checklist.

Results: Patients were 20-54 years old; 72.9% were male; one third reported times of regular cannabis consumption within the previous five years. Drop-out rate was 22% after 18 weeks. Mean severity of depression decreased from 6.9 points (SD 1.5) at entry to 3.8 points (2.7) at week 18 (baseline observation carried forward; 95% CI for the mean difference: 2.4 to 3.8; p<0.001). A treatment response (>50% reduction of the initial score) was seen in 50.8% at week 18. One third of patients complained about side effects, none was considered as severe. Concomitant antidepressant medication (31% of patients) was not associated with outcome.

Conclusions: Medical cannabis was well tolerated and dropout rate was comparable to those in clinical trials of antidepressant medication. Patients reported a clinically significant reduction of depression severity. Further research on the effectiveness of medical cannabis for MDD seems warranted. Risks of this medication, such as sustaining or inducing a cannabis use disorder, or side effects such as poor concentration, must be taken into consideration.”

https://pubmed.ncbi.nlm.nih.gov/38211630/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-2215-6114

[Research progress on anti-inflammatory effects of plant-derived cannabinoid type 2 receptor modulators]

pubmed logo

“Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems.

Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects.

This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.”

https://pubmed.ncbi.nlm.nih.gov/38211986/