THC improves behavioural schizophrenia-like deficits that CBD fails to overcome: a comprehensive multilevel approach using the Poly I:C maternal immune activation

pubmed logo

“Prenatal infections and cannabis use during adolescence are well-recognized risk factors for schizophrenia. As inflammation and oxidative stress (OS) contribute to this disorder, anti-inflammatory drugs have been proposed as potential therapies. This study aimed to evaluate the association between delta-9-tetrahydrocannabinol (THC) and schizophrenia-like abnormalities in a maternal immune activation (MIA) model. Additionally, we assessed the preventive effect of cannabidiol (CBD), a non-psychotropic/anti-inflammatory cannabinoid. THC and/or CBD were administered to Saline- and MIA-offspring during periadolescence. At adulthood, THC-exposed MIA-offspring showed significant improvements in sensorimotor gating deficits. Structural and metabolic brain changes were evaluated by magnetic resonance imaging, revealing cortical shrinkage in Saline- and enlargement in MIA-offspring after THC-exposure. Additionally, MIA-offspring displayed enlarged ventricles and decreased hippocampus, which were partially reverted by both cannabinoids. CBD prevented THC-induced reduction in the corpus callosum, despite affecting white matter structure. Post-mortem studies revealed detrimental effects of THC, including increased inflammation and oxidative stress. CBD partially reverted these pro-inflammatory alterations and modulated THC’s effects on the endocannabinoid system. In conclusion, contrary to expectations, THC exhibited greater behavioural and morphometric benefits, despite promoting a pro-inflammatory state that CBD partially reverted. Further research is needed to elucidate the underlying mechanisms involved in the observed benefits of THC.”

https://pubmed.ncbi.nlm.nih.gov/38064909/

https://www.sciencedirect.com/science/article/abs/pii/S0165178123005930?via%3Dihub

Effects of Full-Spectrum Cannabis Oil with a Cannabidiol:Tetrahydrocannabinol 2:1 Ratio on the Mechanisms Involved in Hepatic Steatosis and Oxidative Stress in Rats Fed a Sucrose-Rich Diet

pubmed logo

“Introduction: This study aimed to analyze the effects of cannabis oil (cannabidiol:tetrahydrocannabinol [CBD:THC], 2:1 ratio) on the mechanisms involved in hepatic steatosis and oxidative stress in an experimental model of metabolic syndrome (MS) induced by a sucrose-rich diet (SRD). We hypothesized that noninvasive oral cannabis oil administration improves hepatic steatosis through a lower activity of lipogenic enzymes and an increase in carnitine palmitoyltransferase-1 (CPT-1) enzyme activity involved in the mitochondrial oxidation of fatty acids. Furthermore, cannabis oil ameliorates liver oxidative stress through the regulation of the main regulatory factors involved, nuclear factor erythroid 2 (NrF2) and nuclear factor-kB (NF-κB) p65. For testing this hypothesize, a relevant experimental model of MS was induced by feeding rats with a SRD for 3 weeks.

Methods: Male Wistar rats were fed the following diets for 3 weeks: reference diet: standard commercial laboratory diet, SRD, and SRD + cannabis oil: noninvasive oral administration of 1 mg/kg body weight cannabis oil daily. The full-spectrum cannabis oil presents a total cannabinoid CBD:THC 2:1 ratio. Serum glucose, triglyceride, total cholesterol, HDL-cholesterol, LDL-cholesterol, uric acid, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase (AP), N-arachidonoylethanolamine or anandamide and 2-arachidonoylglycerol endocannabinoids levels, thiobarbituric acid reactive substance (TBARS) levels, and non-enzymatic antioxidant capacity (ferric ion-reducing antioxidant power [FRAP]) were evaluated. In the liver tissue: histology, nonalcoholic fatty liver disease activity score (NAS), triglycerides and cholesterol content, lipogenic enzyme activities (fatty acid synthase, acetyl-CoA carboxylase, malic enzyme, and glucose-6-phosphate dehydrogenase), enzyme related to mitochondrial fatty acid oxidation (CPT-1), reactive oxygen species, TBARS, FRAP, glutathione, catalase, glutathione peroxidase, and glutathione reductase enzyme activities. 4-hydroxynonenal, NrF2, and NF-κB p65 levels were analyzed by immunohistochemistry.

Results: The results showed that SRD-fed rats developed dyslipidemia, liver damage, hepatic steatosis (increase of key enzymes related to the novo fatty acid synthesis and decrease of key enzyme related to mitochondrial fatty acid oxidation), lipid peroxidation, and oxidative stress. Hepatic NrF2 expression was significantly decreased and NF-κB p65 expression was increased. Cannabis oil administration improved dyslipidemia, liver damage, hepatic steatosis, lipid peroxidation (improving enzymes involved in lipid metabolism), and oxidative stress. In the liver tissue, NrF2 expression increased, and NF-κB p65 expression was reduced.

Conclusion: The present study revealed new aspects of liver damage and steatosis, lipid peroxidation, and oxidative stress in dyslipidemic insulin-resistant SRD-fed rats. We demonstrated new properties and molecular mechanisms of cannabis oil (CBD:THC, 2:1 ratio) on lipotoxicity and hepatic oxidative stress in an experimental model of MS.”

https://pubmed.ncbi.nlm.nih.gov/38023489/

“our results suggest that full-spectrum cannabis oil with a CBD:THC 2:1 ratio may serve as a natural nutraceutical agent to prevent metabolic disorders related to hepatic steatosis, oxidative stress, and NASH. We cannot rule out the possibility that other components of cannabis oil, such as terpenes, flavonoids, and alkaloids, may also contribute to the beneficial effects found in the present study.”

https://karger.com/mca/article/6/1/170/869880/Effects-of-Full-Spectrum-Cannabis-Oil-with-a


Cannabidiol Inhibits IgE-Mediated Mast Cell Degranulation and Anaphylaxis in Mice

pubmed logo

“Scope: Cannabidiol (CBD), the most abundant non-psychoactive constituent of the plant Cannabis sativa, is known to possess immune modulatory properties. This study investigates the effects of CBD on mast cell degranulation in human and mouse primary mast cells and passive cutaneous anaphylaxis in mice.

Methods and results: Mouse bone marrow-derived mast cells and human cord-blood derived mast cells are generated. CBD suppressed antigen-stimulated mast cell degranulation in a concentration-dependent manner. Mechanistically, CBD inhibited both the phosphorylation of FcεRI downstream signaling molecules and calcium mobilization in mast cells, while exerting no effect on FcεRI expression and IgE binding to FcεRI. These suppressive effects are preserved in the mast cells that are depleted of type 1 (CB1) and type 2 (CB2) cannabinoid receptors, as well as in the presence of CB1 agonist, CB2 agonist, CB1 inverse agonist, and CB2 inverse agonist. CBD also inhibited the development of mast cells in a long-term culture. The intraperitoneal administration of CBD suppressed passive cutaneous anaphylaxis in mice as evidenced by a reduction in ear swelling and decrease in the number of degranulated mast cells.

Conclusion: Based on these results, the administration of CBD is a new therapeutic intervention in mast cell-associated anaphylactic diseases.”

https://pubmed.ncbi.nlm.nih.gov/38059783/

https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202300136

An observational study of clinical outcome measures in patients treated with cannabis-based medicinal products on the UK Medical Cannabis Registry

pubmed logo

“Introduction: While there is increasing evidence of the effects of cannabis-based medicinal products (CBMPs) on health-related quality of life (HRQoL), a major limitation of the current literature is the heterogeneity of studied CBMPs. This study aims to analyze changes in HRQoL in patients prescribed a homogenous selection of CBMPs.

Methods: Primary outcomes were changes in patient-reported outcomes (PROMs) at 1, 3, 6, and 12 months from baseline. The secondary outcome was an adverse events analysis. Statistical significance was defined as p < 0.050.

Results: 1378 patients prescribed Adven® CBMPs (Curaleaf International, Guernsey, UK) were included in the final analysis. 581 (42.16%) participants were current users of cannabis at baseline. 641 (46.51%), 235 (17.05%), and 502 (36.43%) patients were treated with oils, dried flowers, or a combination of the two, respectively. Improvements were found in all PROMs in each route of administration at 1, 3, 6, and 12 months from baseline (p < 0.010). Those prescribed dried flower only or both oils and dried flower experienced greater improvements in GAD-7, SQS, and EQ-5D-5L index values at 12 months (p < 0.050). There was no difference in outcomes between those prescribed dried flower only or dried flower with oils (p > 0.050). 3663 (265.82%) adverse events were reported by 297 (21.55%) patients.

Conclusion: There was an associated improvement in self-reported anxiety, sleep quality, and HRQoL in patients treated with the CBMPs. Those prescribed treatment formulations including dried flower were most likely to show a clinical improvement. However, these results must be interpreted with caution given the limitations of study design.”

https://pubmed.ncbi.nlm.nih.gov/38057993/

“In conclusion, the CBMPs studied in this analysis were associated with an improvement in self-reported anxiety, sleep quality, and HRQoL, consistent with existing literature on CBMPs. Patients prescribed treatment formulations, including dried flowers, were most likely to show clinical improvement”

https://onlinelibrary.wiley.com/doi/10.1002/npr2.12403

UK Medical Cannabis Registry: An analysis of clinical outcomes of medicinal cannabis therapy for attention-deficit/hyperactivity disorder

pubmed logo

“Aim: This study aims to analyze the health-related quality of life (HRQoL) and safety outcomes in attention-deficit/hyperactivity disorder (ADHD) patients treated with cannabis-based medicinal products (CBMPs).

Methods: Patients were identified from the UK Medical Cannabis Registry. Primary outcomes were changes in the following patient-reported outcome measures (PROMs) at 1, 3, 6, and 12 months from baseline: EQ-5D-5L index value, generalized anxiety disorder-7 (GAD-7) questionnaire, and the single-item sleep quality score (SQS). Secondary outcomes assessed the incidence of adverse events. Statistical significance was defined as p < 0.050.

Results: Sixty-eight patients met the inclusion criteria. Significant improvements were identified in general HRQoL assessed by EQ-5D-5L index value at 1, 3, and 6 months (p < 0.050). Improvements were also identified in GAD-7 and SQS scores at 1, 3, 6, and 12 months (p < 0.010). 61 (89.71%) adverse events were recorded by 11 (16.18%) participants, of which most were moderate (n = 26, 38.24%).

Conclusion: An association between CBMP treatment and improvements in anxiety, sleep quality, and general HRQoL was observed in patients with ADHD. Treatment was well tolerated at 12 months. Results must be interpreted with caution as a causative effect cannot be proven. These results, however, do provide additional support for future evaluation within randomized controlled trials.”

https://pubmed.ncbi.nlm.nih.gov/38058251/

https://onlinelibrary.wiley.com/doi/10.1002/npr2.12400

Relief of nocturnal neuropathic pain with the use of cannabis in a patient with Fabry disease

pubmed logo

“Neuropathic pain is one of the most invalidating symptoms in patients with Fabry disease (FD), affecting their quality of life, it is linked to small fiber neuropathy and it may not respond to available disease specific treatments. We report the case of a 32 years old man with classic FD and severe neuropathic pain who, after the failure of several standard pharmaceutical approaches, was treated with medical cannabis with relief of nocturnal pain and sleep improvement.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694749/

“In conclusion: although more evidence is needed, this case report suggests that the use of medical cannabis could be considered as a pain treatment option for patient with FD, in particular for nocturnal pain relief, when other pharmacological approaches have failed.”

https://www.sciencedirect.com/science/article/pii/S2214426923000563?via%3Dihub


Exploring the Antibacterial Potential of Semisynthetic Phytocannabinoid: Tetrahydrocannabidiol (THCBD) as a Potential Antibacterial Agent against Sensitive and Resistant Strains of Staphylococcus aureus

pubmed logo

“Antimicrobial resistance (AMR) is one of the most challenging problems and is responsible for millions of deaths every year. We therefore urgently require new chemical entities with novel mechanisms of action. Phytocannabinoids have been adequately reported for the antimicrobial effect but not seriously pursued because of either stringent regulatory issues or poor drug-like properties. In this regard, the current work demonstrated the antibacterial potential of tetrahydrocannabidiol (THCBD, 4), a semisynthetic phytocannabinoid, against Staphylococcus aureus, the second-most widespread bug recognized by the WHO. THCBD (4) was generated from cannabidiol and subjected to extensive antibacterial screening. In in vitro studies, THCBD (4) demonstrated a potent MIC of 0.25 μg/mL against Gram-positive bacteria, S. aureus ATCC-29213. It is interesting to note that THCBD (4) has demonstrated strong effectiveness against efflux pump-overexpressing (SA-1199B, SA-K2191, SA-K2192, and Mupr-1) and multidrug-resistant (MRSA-15187) S. aureus strains. THCBD (4) has also shown a good effect in kill kinetic assays against ATCC-29213 and MRSA-15187. In the checkerboard assay, THCBD (4) has shown additive/indifference effects with several well-known clinically used antibiotics, tetracycline, mupirocin, penicillin G, and ciprofloxacin. THCBD (4) also exhibited good permeability in the artificial skin model. Most importantly, THCBD (4) has significantly reduced CFU in mice’s in vivo skin infection models and also demonstrated decent plasma exposure with 16-17% oral bioavailability. Acute dermal toxicity of THCBD (4) suggests no marked treatment-related impact on gross pathophysiology. This attractive in vitro and in vivo profile of plant-based compounds opens a new direction for new-generation antibiotics and warrants further detailed investigation.”

https://pubmed.ncbi.nlm.nih.gov/38051636/

https://pubs.acs.org/doi/10.1021/acsinfecdis.3c00154

Abstract Image

Graphene quantum dots based on cannabis seeds for efficient wound healing in a mouse incisional wound model: Link with stress and neurobehavioral effect

pubmed logo

“Graphene quantum dots (GQDs) are promising biomaterials with potential applicability in several areas due to their many useful and unique features. Among different applications, GQDs are photodynamic therapy agents that generate single oxygen and improve antimicrobial activity. In the present study, and for the first time, GQD were isolated from the Cannabis sativa L. seeds to generate C-GQD as a new biomaterial for antibacterial and wound healing applications. Detailed characterization was performed using FTIR, UV-vis, Raman spectra, photoluminescence, TEM examination, HRTEM, ζ-potential, and XRD. Our results revealed in vitro and in vivo antibacterial activity of C-GQDs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with reduced minimal inhibitory concentration (MIC) of 236µg/mL for both strains. In addition, the C-GQDs confirmed the in vitro analysis and exhibited anti-inflammatory activity by reducing the level of neutrophils in blood and skin tissue. C-GQDs act by accelerating re-epithelization and granulation tissue formation. In addition, C-GQDs restored neurobehavioral alteration induced by incisional wounds by reducing oxidative stress, decreasing cortisol levels, increasing anxiolytic-like effect, and increasing vertical locomotor activity. The wound-healing effects of C-GQDs support its role as a potential therapeutic agent for diverse skin injuries.”

https://pubmed.ncbi.nlm.nih.gov/38042382/

“In the present work, Cannabis sativa L. seeds GQDs (termed here as C-GQDs) were generated through a novel eco-friendly approach using cannabis seeds as precursor and without the addition of strong oxidants, thus avoiding the production of toxic gases.

Cannabis seeds offer an opportunity in regard to versatility, cost, and availability. They are a rich source of fiber and have significant medicinal value. They contain antibacterial cannabinoids with the potential to kill antibiotic-resistant bacteria. They also possess analgesics and anti-inflammatory effects that can be used in various biomedical applications.

More importantly, we found that C-GQDs accelerate the healing process by killing S. aureus and E. coli implicated in skin wound infection.

The C-GQDs, via their antibacterial, anti-inflammatory, anti-stress, anxiolytic-like effects showed an accelerative potential of wound closure in mice models of incisional wounds.”

https://www.sciencedirect.com/science/article/abs/pii/S0378517323010803?via%3Dihub

Cannabidiol represses miR-143 to promote cardiomyocyte proliferation and heart regeneration after myocardial infarction

pubmed logo

“Mammalian heart is capable to regenerate almost completely early after birth through endogenous cardiomyocyte proliferation. However, this regenerative capacity diminishes gradually with growth and is nearly lost in adulthood. Cannabidiol (CBD) is a major component of cannabis and has various biological activities to regulate oxidative stress, fibrosis, inflammation, and cell death. The present study was conducted to investigate the pharmacological effects of CBD on heart regeneration in post-MI mice. MI models in adult mice were constructed via coronary artery ligation, which were administrated with or without CBD. Our results demonstrate that systemic administration (10 mg/kg) of CBD markedly increased cardiac regenerative ability, reduced infarct size, and restored cardiac function in MI mice. Consistently, in vitro study also showed that CBD was able to promote the proliferation of neonatal cardiomyocytes. Mechanistically, the expression of miR-143-3p related to cardiomyocyte proliferation was significantly down-regulated in CBD-treated cardiomyocytes, while the overexpression of miR-143-3p inhibited cardiomyocyte mitosis and eliminated CBD-induced cardiomyocyte proliferation. Moreover, CBD enhanced the expression of Yap and Ctnnd1, which were demonstrated as the target genes of miR-143-3p. Silencing of Yap and Ctnnd1 hindered the proliferative effects of CBD. We further revealed that inhibition of the cannabinoid receptor 2 impeded the regulatory effect of CBD on miR-143-3p and its downstream target Yap/Ctnnd1, which ultimately eliminated the pro-proliferative effect of CBD on neonatal and adult cardiomyocytes. Taken together, CBD promotes cardiomyocyte proliferation and heart regeneration after MI via miR-143-3p/Yap/Ctnnd1 signaling pathway, which provides a new strategy for cardiac repair in adult myocardium.”

https://pubmed.ncbi.nlm.nih.gov/38052413/

“Cannabidiol (CBD)-an abundant component of cannabis with no psychoactive or cognitive effect has been shown to have extensive therapeutic properties including neuroprotection, anti-inflammation, anti-tumor and analgesic effects. In addition, multiple lines of evidence indicated that CBD is a potent protective agent against cardiovascular disease.”

https://www.sciencedirect.com/science/article/abs/pii/S0014299923007598?via%3Dihub

Antinociceptive action of cannabidiol on thermal sensitivity and post-operative pain in male and female rats

pubmed logo

“This study investigated the antinociceptive potential of cannabidiol (CBD) in male and female Wistar rats. The assessment and analysis included tail withdrawal to thermal stimulation (tail flick test) and mechanical allodynia induced by plantar incision injury (von Frey test). CBD reduced acute thermal sensitivity in uninjured animals and post-operative mechanical allodynia in males and females. In the tail flick test, CBD 30mg/kg i.p. was required to induce antinociception in males. During the proestrus phase, females did not show a statistically significant antinociceptive response to CBD treatment despite a noticeable trend. In contrast, in a separate group of rats tested during the late diestrus phase, antinociception varied with CBD dosage and time. In the post-operative pain model, CBD at 3mg/kg decreased mechanical allodynia in males. Similarly, this dose reduced allodynia in females during proestrus. However, in females during late diestrus, the lower dose of CBD (0.3mg/kg) reduced mechanical allodynia, although the latency to onset of the effect was slower (90minutes). The effectiveness of a 10-fold lower dose of CBD during the late diestrus stage in females suggests that ovarian hormones can influence the action of CBD. While CBD has potential for alleviating pain in humans, personalized dosing regimens may need to be developed to treat pain in women.”

https://pubmed.ncbi.nlm.nih.gov/38048909/

“•CBD produces antinociception in male and female rats.

•CBD was effective against acute thermal and post-operative pain in both sexes.

•Females in late diestrus were sensitive to a 10-fold lower dose of CBD than in proestrus.”

https://www.sciencedirect.com/science/article/pii/S0166432823005119?via%3Dihub