CBD and the 5-HT1A receptor: A medicinal and pharmacological review

pubmed logo

“Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms.

It has the ability to bind multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD’s pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated.

This review explores recent literature to elucidate these questions, highlighting the neurotherapeutic outcomes of this pharmacodynamic interaction and proposing a signaling pathway underlying the mechanism by which CBD desensitizes 5-HT1AR signaling.

A comprehensive survey of the literature underscores CBD’s multifaceted neurotherapeutic effects, encompassing antidepressant, anxiolytic, neuroprotective, antipsychotic, antiemetic, anti-allodynic, anti-epileptic, anti-degenerative, and addiction-treating properties, attributable in part to its interactions with 5-HT1AR.

Furthermore, evidence suggests that the pharmacodynamic interaction between CBD and 5-HT1AR is contingent upon dosage. Moreover, we propose that CBD can induce desensitization of 5-HT1AR via both homologous and heterologous mechanisms. Homologous desensitization involves the recruitment of G protein-coupled receptor kinase 2 (GRK2) and β-arrestin, leading to receptor endocytosis. In contrast, heterologous desensitization is mediated by an elevated intracellular calcium level or activation of protein kinases, such as c-Jun N-terminal kinase (JNK), through the activity of other receptors.”

https://pubmed.ncbi.nlm.nih.gov/39778776/

“Cannabis was one of the first inhaled drugs utilized by humans, with evidence of use for gout, rheumatism, and malaria dating to 2737 BCE”

“The concurrent literature revealed that CBD produces several therapeutic effects through its complex pharmacodynamic interactions with 5-HT1AR. Therapeutic applications of CBD, including its anxiolytic, antidepressant, antipsychotic, anti-degenerative, neuroprotective, anti-epileptic, and anti-addictive properties were mediated, at least in part, by its binding to 5-HT1AR.”

https://www.sciencedirect.com/science/article/abs/pii/S0006295225000048?via%3Dihub

Medicinal Cannabis and the Intestinal Microbiome

pubmed logo

“Historically, the multiple uses of cannabis as a medicine, food, and for recreational purposes as a psychoactive drug span several centuries.

The various components of the plant (i.e., seeds, roots, leaves and flowers) have been utilized to alleviate symptoms of inflammation and pain (e.g., osteoarthritis, rheumatoid arthritis), mood disorders such as anxiety, and intestinal problems such as nausea, vomiting, abdominal pain and diarrhea.

It has been established that the intestinal microbiota progresses neurological, endocrine, and immunological network effects through the gut-microbiota-brain axis, serving as a bilateral communication pathway between the central and enteric nervous systems.

An expanding body of clinical evidence emphasizes that the endocannabinoid system has a fundamental connection in regulating immune responses. This is exemplified by its pivotal role in intestinal metabolic and immunity equilibrium and intestinal barrier integrity.

This neuromodulator system responds to internal and external environmental signals while also serving as a homeostatic effector system, participating in a reciprocal association with the intestinal microbiota.

We advance an exogenous cannabinoid-intestinal microbiota-endocannabinoid system axis potentiated by the intestinal microbiome and medicinal cannabinoids supporting the mechanism of action of the endocannabinoid system. An integrative medicine model of patient care is advanced that may provide patients with beneficial health outcomes when prescribed medicinal cannabis.”

https://pubmed.ncbi.nlm.nih.gov/39770543/

“Furthermore, other modes of delivery of medicinal cannabis, such as oro-buccal, sublingual and inhaled/smoked alternatives, provide cannabinoids that have rapid access to the systemic circulation, bypassing the intestinal tract.”

https://www.mdpi.com/1424-8247/17/12/1702

The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting

pubmed logo

“Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting. Although there are limited high-quality human clinical trials, pre-clinical evidence suggests that cannabinoids and manipulations of the eCB system have anti-nausea/anti-emetic potential. The pre-clinical anti-nausea/anti-emetic evidence highlights the need for further evaluation of cannabinoids and manipulations of eCBs and other fatty acid amides in clinical trials.”

https://pubmed.ncbi.nlm.nih.gov/39739175/

https://link.springer.com/chapter/10.1007/7854_2024_554

Protective Action of Cannabidiol on Tiamulin Toxicity in Humans-In Vitro Study

pubmed logo

“The growing awareness and need to protect public health, including food safety, require a thorough study of the mechanism of action of veterinary drugs in consumers to reduce their negative impact on humans. Inappropriate use of veterinary drugs in animal husbandry, such as tiamulin, leads to the appearance of residues in edible animal tissues.

The use of natural substances of plant origin, extracted from hemp (Cannabis sativa L.), such as cannabidiol (CBD), is one of the solutions to minimize the negative effects of tiamulin.

This study aimed to determine the effect of CBD on the cytotoxicity of tiamulin in humans.

The cytotoxic activity of tiamulin and the effect of its mixtures with CBD were tested after 72 h exposure to three human cell lines: SH-SY5Y, HepG2 and HEK-293. Cytotoxic concentrations (IC50) of the tested drug and in combination with CBD were assessed using five biochemical endpoints: mitochondrial and lysosomal activity, proliferation, cell membrane integrity and effects on DNA synthesis. Oxidative stress, cell death and cellular morphology were also assessed. The nature of the interaction between the veterinary drug and CBD was assessed using the combination index. The long-term effect of tiamulin inhibited lysosomal (SH-SY5SY) and mitochondrial (HepG2) activity and DNA synthesis (HEK-293). IC50 values for tiamulin ranged from 2.1 to >200 µg/mL (SH-SY5SY), 13.9 to 39.5 µg/mL (HepG2) and 8.5 to 76.9 µg/mL (HEK-293). IC50 values for the drug/CBD mixtures were higher.

Reduced levels of oxidative stress, apoptosis and changes in cell morphology were demonstrated after exposure to the mixtures. Interactions between the veterinary drug and CBD showed a concentration-dependent nature of tiamulin in cell culture, ranging from antagonistic (low concentrations) to synergistic effects at high drug concentrations.

The increased risk to human health associated with the presence of the veterinary drug in food products and the protective nature of CBD use underline the importance of these studies in food toxicology and require further investigation.”

https://pubmed.ncbi.nlm.nih.gov/39769305/

https://www.mdpi.com/1422-0067/25/24/13542

Cannabichromene as a Novel Inhibitor of Th2 Cytokine and JAK/STAT Pathway Activation in Atopic Dermatitis Models

pubmed logo

“Cannabichromene (CBC) is one of the main cannabinoids found in the cannabis plant, and although less well known than tetrahydrocannabinol (THC) and cannabidiol (CBD), it is gaining attention for its potential therapeutic benefits.

To date, CBC’s known mechanisms of action include anti-inflammatory, analgesic, antidepressant, antimicrobial, neuroprotective, and anti-acne effects through TRP channel activation and the inhibition of inflammatory pathways, suggesting that it may have therapeutic potential in the treatment of inflammatory skin diseases, such as atopic dermatitis (AD), but its exact mechanism of action remains unclear. Therefore, in this study, we investigated the effects of CBC on Th2 cytokines along with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways involved in AD pathogenesis. We used a 2,4-Dinitrochlorobenzene (DNCB)-induced BALB/c mouse model to topically administer CBC (0.1 mg/kg or 1 mg/kg).

The results showed that skin lesion severity, ear thickness, epithelial thickness of dorsal and ear skin, and mast cell infiltration were significantly reduced in the 0.1 mg/kg CBC-treated group compared with the DNCB-treated group (p < 0.001). In addition, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed a significant decrease in the mRNA expression of Th2 cytokines (TSLPIL-4IL-13) and inflammatory mediators (IFN-γIL-1βIL-6IL-17IL-18, and IL-33) (p < 0.05). Western blot analysis also revealed a significant decrease in JAK1, JAK2, STAT1, STAT2, STAT3, and STAT6 protein expression (p < 0.05).

These results suggest that CBC is a promising candidate for the treatment of AD and demonstrates the potential to alleviate AD symptoms by suppressing the Th2 immune response.”

https://pubmed.ncbi.nlm.nih.gov/39769302/

https://www.mdpi.com/1422-0067/25/24/13539

Exploring Natural Analgesics for Chronic Pain Management: Cannabinoids and Other Phytoconstituents

pubmed logo

“Chronic pain lasting more than three months or persisting after normal healing is a significant global health issue. In a healthcare system, it is crucial to ensure proper chronic pain management. Traditional pharmacological and non-pharmacological pain management techniques may not fully meet the requirements of physicians regarding effectiveness and safety. Therefore, researchers are exploring natural analgesics.

Plant-based phytoconstituents show promise in relieving chronic pain associated with various diseases.

This study aims to review the latest advances in discovering natural bioactive compounds that can help alleviate chronic pain. It discusses the pathways of chronic pain and a multifactorial treatment strategy. It also organizes data on using plant- derived substances, such as cannabinoids, terpenoids, phenolics, and crude extracts. Additionally, it delves into the pharmacodynamics of cannabinoids, including their route of administration and elimination.

The review presents the results of 22 clinical trials on various cannabinoids for pain relief. It is important to note that opioids and other alkaloids from plants are not covered in this article due to their primary use in controlling acute rather than chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/39779559/

https://www.eurekaselect.com/article/145464

Synergistic Pain-Reducing Effects of Bixa orellana (Chronic® and Chronic In®) and Cannabidiol-Rich Cannabis sativa Extracts in Experimental Pain Models

pubmed logo

“Background: The present study aimed to evaluate the potential synergy between pharmaceutical formulations containing Bixa orellana L. (granulated-CHR OR and injectable nanodispersion-CHR IN) in conjunction with a cannabidiol (CBD)-rich extract of Cannabis sativa L. (CSE) on experimental pain models in Wistar rats. 

Methods: Chemical analysis was performed using gas chromatography (GC-MS). The pain tests employed were acetic acid-induced writhing (injection i.p. of 0.9% acetic acid), formalin (solution 1%), hot plate (55 ± 0.5 °C), and cold-water tail withdrawal tests. 

Results: Chemical analyses by chromatography confirmed that the oil from B. orellana is rich in δ-tocotrienol (72.0 ± 1.0%), while the oil from Cannabis sativa highlighted the presence of cannabidiol (CBD). The results from the experimental pain tests indicated that the combined administration of formulations containing Bixa orellana and C. sativa, such as the granulated CHR OR (400 mg/kg, orally) with CSE (40 mg/kg, orally) or the nanodispersion CHR IN (10 mg/kg, intramuscularly) with CSE (40 mg/kg, orally), demonstrated significant results (p < 0.001) in pain reduction. Although the formulations containing Bixa orellana extract showed statistical significance in the tests when used in isolation, their effects were inferior compared to the combined use with CSE or the isolated use of CSE. These findings suggest that combining formulations containing extracts of these plant species may represent a viable therapeutic option, considering the synergistic action in reducing pain under the experimental conditions employed. 

Conclusions: these results imply that combining the phytocomplexes present in B. orellana and C. sativa may be a promising approach for pain treatment.”

https://pubmed.ncbi.nlm.nih.gov/39770552/

https://www.mdpi.com/1424-8247/17/12/1710

Hemp Extract (Extractum Cannabis) in the Treatment of Gastrointestinal Distress and Dyspepsia: Historical Insights from Barcelona, Spain

pubmed logo

“This study explores the trajectory of interest in and use of Extractum Cannabis (hemp extract, i.e., extract of Cannabis sativa L.) for the symptomatic treatment of minor gastrointestinal distress and dyspepsia in nineteenth- and early twentieth-century Barcelona (Catalonia, Spain) prior to 1939, through a review of primary sources.

The objective of this paper is to present a historical pharmaceutical and applied review of the medical use of the hemp genus (Cannabis L.) prior to its prohibition, thereby contributing to its recognition as a medicinal product.

The information provided demonstrates evidence of the medicinal use of cannabis within the historical context studied. The interactions between this legacy medical use and the contemporary body of pharmacological and toxicological knowledge (on hemp, its constituents, and the endocannabinoid system in gastrointestinal and stomach disorders) are discussed, providing new possible clinical perspectives.

Within its limitations-including the scope, limited accessibility to, and varying quality of archives-this research contributes to a more granular understanding of the historical embeddedness of psychoactive hemp medicines in northeastern Spain, suggesting that medical and pharmaceutical traditions could play a role in informing contemporary approaches to “medical marijuana”.”

https://pubmed.ncbi.nlm.nih.gov/39770428/

https://www.mdpi.com/1424-8247/17/12/1585

An In Vitro Evaluation of Industrial Hemp Extracts Against the Phytopathogenic Bacteria Erwinia carotovora, Pseudomonas syringae pv. tomato, and Pseudomonas syringae pv. tabaci

pubmed logo

“Pests and diseases have caused significant problems since the domestication of crops, resulting in economic loss and hunger. To overcome these problems, synthetic pesticides were developed to control pests; however, there are significant detrimental side effects of synthetic pesticides on the environment and human health. There is an urgent need to develop safer and more sustainable pesticides.

Industrial hemp is a reservoir of compounds that could potentially replace some synthetic bactericides, fungicides, and insecticides.

We determined the efficacy of industrial hemp extracts against Pseudomonas syringae pv. tabaci (PSTA), Pseudomonas syringae pv. tomato (PSTO), and Erwinia carotovora (EC).

The study revealed a minimum inhibitory concentration (MIC) of 2.05 mg/mL and a non-inhibitory concentration (NIC) of 1.2 mg/mL for PSTA, an MIC of 5.7 mg/mL and NIC of 0.66 mg/mL for PSTO, and an MIC of 12.04 mg/mL and NIC of 5.4 mg/mL for EC. Time-kill assays indicated the regrowth of E. carotovora at 4 × MIC after 15 h and P. syringae pv. tomato at 2 × MIC after 20 h; however, P. syringae pv. tabaci had no regrowth. The susceptibility of test bacteria to hemp extract can be ordered from the most susceptible to the least susceptible, as follows: P. syringae pv. tabaci > P. syringae pv. tomato > E. carotovora.

Overall, the data indicate hemp extract is a potential source of sustainable and safe biopesticides against these major plant pathogens.”

https://pubmed.ncbi.nlm.nih.gov/39769990/

“The data show the susceptibility of the test bacteria to hemp extract, ordered from the most susceptible to the least susceptible, as follows: P. syringae pv. tabaci > P. syringae pv. tomato > E. carotovora.

This study indicates that hemp extract is effective in controlling E. carotovoraP. syringae pv. tabaci, and P. syringae pv. tomato. However, the hemp extract is more effective against both Pseudomonas spp. than E. carotovora. The difference could be due to their difference in cell wall structure, resistance mechanisms, and metabolic pathways.

More studies are needed to determine how hemp extract causes stress to bacteria such as interference with quorum sensing, biofilm formation, and oxidative stress. Moreover, to ensure sustainable agricultural practices that are safe and affordable for low-income farmers, synergistic effect studies are needed between hemp compounds in the extract and, more importantly, between hemp extracts and other plant extracts.”

https://www.mdpi.com/1420-3049/29/24/5902

The Anticancer Activity of Cannabinol (CBN) and Cannabigerol (CBG) on Acute Myeloid Leukemia Cells

pubmed logo

“Several cannabis plant-derived compounds, especially cannabinoids, exhibit therapeutic potential in numerous diseases and conditions.

In particular, THC and CBD impart palliative, antiemetic, as well as anticancer effects.

The antitumor effects include inhibition of cancerous cell growth and metastasis and induction of cell death, all mediated by cannabinoid interaction with the endocannabinoid system (ECS). However, the exact molecular mechanisms are still poorly understood. In addition, their effects on leukemia have scarcely been investigated.

The current work aimed to assess the antileukemic effects of CBN and CBG on an acute monocytic leukemia cell line, the THP-1. THP-1 cell viability, morphology and cell cycle analyses were performed to determine potential cytotoxic, antiproliferative, and apoptotic effects of CBN and CBG. Western blotting was carried out to measure the expression of the proapoptotic p53.

Both CBN and CBG inhibited cell growth and induced THP-1 cell apoptosis and cell cycle arrest in a dose- and time-dependent manner. CBN and CBG illustrated different dosage effects on THP-1 cells in the MTT assay (CBN > 40 μΜ, CBG > 1 μM) and flow cytometry (CBN > 5 μM, CBG > 40 μM), highlighting the cannabinoids’ antileukemic activity.

Our study hints at a direct correlation between p53 expression and CBG or CBN doses exceeding 50 μM, suggesting potential activation of p53-associated signaling pathways underlying these effects.

Taken together, CBG and CBN exhibited suppressive, cell death-inducing effects on leukemia cells. However, further in-depth research will be needed to explore the molecular mechanisms driving the anticancer effects of CBN and CBG in the leukemia setting.”

https://pubmed.ncbi.nlm.nih.gov/39770061/

https://www.mdpi.com/1420-3049/29/24/5970