“Recently, the anti-tumor effects of cannabis extract on various cancers have attracted the attention of researchers.
Here, we report a nanoemulsion (NE) composition designed to enhance the delivery of two active components in cannabis extracts (∆9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD)) in an animal model of glioblastoma. The efficacy of the NE containing the two drugs (NED) was compared with the bulk drugs and carrier (NE without the drugs) using the C6 tumor model in rats. Hemocompatibility factors (RBC, MCV, MCH, MCHC, RDW, PPP, PT and PTT) were studied to determine the potential in vivo toxicity of NED. The optimized NED with mean ± SD diameter 29 ± 6 nm was obtained.
It was shown that by administering the drugs in the form of NED, the hemocompatibility increased. Cytotoxicity studies indicated that the NE without the active components (i.e. mixture of surfactants and oil) was the most cytotoxic group, while the bulk group had no toxicity. From the in vivo MRI and survival studies, the NED group had maximum efficacy (with ~4 times smaller tumor volume on day 7 of treatment, compared with the control. Also, survival time of the control, bulk drug, NE and NED were 9, 4, 12.5 and 51 days, respectively) with no important adverse effects.
In conclusion, the NE containing cannabis extract could be introduced as an effective treatment in reducing brain glioblastoma tumor progression.”
https://pubmed.ncbi.nlm.nih.gov/39375818/
“Based on our findings, the nanoemulsion model containing CBD and THC increased the antitumor effect of the drugs. This may be due to the role of nanoemulsions in improving drug delivery across the blood-brain barrier and improving blood compatibility during intravenous drug administration. However, this study is a primary investigation in the rat animal model, and future studies should consider further evaluation of toxicity and efficacy in larger animal populations.”
https://bmcpharmacoltoxicol.biomedcentral.com/articles/10.1186/s40360-024-00788-w