β-Caryophyllene (BCP) ameliorates MPP+ induced cytotoxicity.

Biomedicine & Pharmacotherapy

“Parkinson’s disease (PD) is one of the most common neurodegenerative diseases resulting from the continuous death of dopaminergic neurons in substantia nigra. MPP+ (1-methyl-4-phenylpyridinium) has been reported to be a major neurotoxin causing neurotoxic insults on dopaminergic neurons in humans.

β-Caryophyllene (BCP), an important cannabinoid derived from the essential oils of different species, has displayed pharmacological properties in different kinds of tissues and cells. However, neuroprotective effects of BCP in PD haven’t been reported before.

Our results indicate that treatment with MPP+ in SH-SY5Y cells led to a significant decrease in cell viability, which was restored by BCP. Additionally, BCP suppressed MPP+-induced release of lactic dehydrogenase (LDH) and the generation of reactive oxygen species (ROS). In contrast, BCP treatment restored the reduction in mitochondrial membrane potential (MMP) induced by MPP+. BCP treatment increased intracellular GSH and GPx activity.

Also, we found that the antioxidant effects of BCP against MPP+- induced neurotoxicity are dependent on cannabinoid receptor type 2 (CB2R). Moreover, our results indicated that BCP prevented MPP+-induced apoptosis of SH-SY5Y through inhibiting the up-regulation of cleaved Caspase-3, Bax, and restoring the expression of Bcl-2. Besides, BCP markedly suppressed HO-1 activation and c-Jun N-terminal Kinase (JNK) phosphorylation.

We conclude that BCP might act as a promising therapeutic agent against MPP+ toxicity in neuronal cells.”

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

Cannabis Essential Oil: A Preliminary Study for the Evaluation of the Brain Effects.

Image result for Evid Based Complement Alternat Med

“We examined the effects of essential oil from legal (THC <0.2% w/v) hemp variety on the nervous system in 5 healthy volunteers. GC/EIMS and GC/FID analysis of the EO showed that the main components were myrcene and β-caryophyllene.

The experiment consisted of measuring autonomic nervous system (ANS) parameters; evaluations of the mood state; and electroencephalography (EEG) recording before treatment, during treatment, and after hemp inhalation periods as compared with control conditions. The results revealed decreased diastolic blood pressure, increased heart rate, and significant increased skin temperature.

The subjects described themselves as more energetic, relaxed, and calm.

The analysis EEG showed a significant increase in the mean frequency of alpha (8-13 Hz) and significant decreased mean frequency and relative power of beta 2 (18,5-30 Hz) waves. Moreover, an increased power, relative power, and amplitude of theta (4-8 Hz) and alpha brain waves activities and an increment in the delta wave (0,5-4 Hz) power and relative power was recorded in the posterior region of the brain.

These results suggest that the brain wave activity and ANS are affected by the inhalation of the EO of Cannabis sativa suggesting a neuromodular activity in cases of stress, depression, and anxiety.”

(-)-β-Caryophyllene, a CB2 Receptor-Selective Phytocannabinoid, Suppresses Motor Paralysis and Neuroinflammation in a Murine Model of Multiple Sclerosis.

Image result for Int J Mol Sci.

“(-)-β-caryophyllene (BCP), a cannabinoid receptor type 2 (CB2)-selective phytocannabinoid, has already been shown in precedent literature to exhibit both anti-inflammatory and analgesic effects in mouse models of inflammatory and neuropathic pain.

Herein, we endeavored to investigate the therapeutic potential of BCP on experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). Furthermore, we sought to demonstrate some of the mechanisms that underlie the modulation BCP exerts on autoimmune activated T cells, the pro-inflammatory scenery of the central nervous system (CNS), and demyelination.

Our findings demonstrate that BCP significantly ameliorates both the clinical and pathological parameters of EAE. In addition, data hereby presented indicates that mechanisms underlying BCP immunomodulatory effect seems to be linked to its ability to inhibit microglial cells, CD4+ and CD8+ T lymphocytes, as well as protein expression of pro-inflammatory cytokines. Furthermore, it diminished axonal demyelination and modulated Th1/Treg immune balance through the activation of CB2 receptor.

Altogether, our study represents significant implications for clinical research and strongly supports the effectiveness of BCP as a novel molecule to target in the development of effective therapeutic agents for MS.” https://www.ncbi.nlm.nih.gov/pubmed/28368293

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Terpene synthases from Cannabis sativa.

 Image result for PLoS One.

“Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence.

Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties.

Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b.

Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene.

Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.”

https://www.ncbi.nlm.nih.gov/pubmed/28355238

The combination of β-caryophyllene, baicalin and catechin synergistically suppresses the proliferation and promotes the death of RAW267.4 macrophages in vitro.

Image result for International Journal of Molecular Medicine

“β-caryophyllene, which is a constituent of many essential oils, has been known to be a selective agonist of the cannabinoid receptor type-2 and to exert cannabimimetic anti-inflammatory effects in animals.

On the whole, this study demonstrates that the combination of β-caryophyllene, baicalin and (+)-catechin exerts synergistic suppressive effects on macrophages in vitro.

This composition may be a useful as an anti-inflammatory treatment strategy.”

https://www.ncbi.nlm.nih.gov/pubmed/27840942

Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson’s Disease.

“The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson’s disease (PD).

The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD.

In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD.

Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial effects of BCP.

The present study suggests that BCP has the potential therapeutic efficacy to elicit significant neuroprotection by its anti-inflammatory and antioxidant activities mediated by activation of the CB2 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27531971

β-caryophyllene, a dietary cannabinoid, complexed with β-cyclodextrin produced anti-hyperalgesic effect involving the inhibition of Fos expression in superficial dorsal horn.

“Evaluate the anti-hyperalgesic effect of the complex containing β-caryophyllene (βCP) and β-cyclodextrin (βCD) in a non-inflammatory chronic muscle pain mice model and investigated its action on superficial dorsal horn of the lumbar spinal cord.

The characterization tests indicated that βCP were efficiently incorporated into βCD. The oral treatment with βCP-βCD, at all doses tested, produced a significant reduction on mechanical hyperalgesia and a significant increase in muscle withdrawal thresholds, without produce any alteration in force. In addition, βCP-βCD was able to significantly decrease Fos expression in the superficial dorsal horn.

SIGNIFICANCE:

Thus, βCP-βCD attenuates the non-inflammatory chronic muscle pain in mice and inhibits the Fos expression in the lumbar spinal cord.”

http://www.ncbi.nlm.nih.gov/pubmed/26883973

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

“β (beta)-cyclodextrin: 7-membered sugar ring molecule”  https://en.wikipedia.org/wiki/Cyclodextrin

β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice.

“…high-fat diet (HFD) feeding stimulated solid tumor growth and lymph node (LN) metastasis… β-caryophyllene (BCP) is a natural bicyclic sesquiterpene found in many essential oils and has been shown to exert anti-inflammatory activities….

BCP inhibits HFD-induced melanoma progression…

β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice.” http://www.ncbi.nlm.nih.gov/pubmed/26025912

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

http://www.thctotalhealthcare.com/category/melanoma/

Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures.

“Increasing evidence suggests that plant-derived extracts and their isolated components are useful for treatment of seizures and, hence, constitute a valuable source of new antiepileptic drugs with improved efficacy and better adverse effect profile.

β-Caryophyllene is a natural bicyclic sesquiterpene that occurs in a wide range of plant species and displays a number of biological actions, including neuroprotective activity.

In the present study, we tested the hypothesis that β-caryophyllene displays anticonvulsant effects.

Altogether, the present data suggest that β-caryophyllene displays anticonvulsant activity against seizures induced by PTZ in mice.

Since no adverse effects were observed in the same dose range of the anticonvulsant effect, β-caryophyllene should be further evaluated in future development of new anticonvulsant drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/26827298

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

The endocannabinoid system, cannabinoids, and pain.

“The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation… Exogenous plant-based cannabinoids (phytocannabinoids) and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions.

Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking), as well as regulatory or legal constraints.

 However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles.

This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/24228165