The neurobiology and evolution of cannabinoid signalling.

Abstract

“The plant Cannabis sativa has been used by humans for thousands of years because of its psychoactivity. The major psychoactive ingredient of cannabis is Delta(9)-tetrahydrocannabinol, which exerts effects in the brain by binding to a G-protein-coupled receptor known as the CB1 cannabinoid receptor. The discovery of this receptor indicated that endogenous cannabinoids may occur in the brain, which act as physiological ligands for CB1. Two putative endocannabinoid ligands, arachidonylethanolamide (‘anandamide’) and 2-arachidonylglycerol, have been identified, giving rise to the concept of a cannabinoid signalling system. Little is known about how or where these compounds are synthesized in the brain and how this relates to CB1 expression. However, detailed neuroanatomical and electrophysiological analysis of mammalian nervous systems has revealed that the CB1 receptor is targeted to the presynaptic terminals of neurons where it acts to inhibit release of ‘classical’ neurotransmitters. Moreover, an enzyme that inactivates endocannabinoids, fatty acid amide hydrolase, appears to be preferentially targeted to the somatodendritic compartment of neurons that are postsynaptic to CB1-expressing axon terminals. Based on these findings, we present here a model of cannabinoid signalling in which anandamide is synthesized by postsynaptic cells and acts as a retrograde messenger molecule to modulate neurotransmitter release from presynaptic terminals. Using this model as a framework, we discuss the role of cannabinoid signalling in different regions of the nervous system in relation to the characteristic physiological actions of cannabinoids in mammals, which include effects on movement, memory, pain and smooth muscle contractility. The discovery of the cannabinoid signalling system in mammals has prompted investigation of the occurrence of this pathway in non-mammalian animals. Here we review the evidence for the existence of cannabinoid receptors in non-mammalian vertebrates and invertebrates and discuss the evolution of the cannabinoid signalling system. Genes encoding orthologues of the mammalian CB1 receptor have been identified in a fish, an amphibian and a bird, indicating that CB1 receptors may occur throughout the vertebrates. Pharmacological actions of cannabinoids and specific binding sites for cannabinoids have been reported in several invertebrate species, but the molecular basis for these effects is not known. Importantly, however, the genomes of the protostomian invertebrates Drosophila melanogaster and Caenorhabditis elegans do not contain CB1 orthologues, indicating that CB1-like cannabinoid receptors may have evolved after the divergence of deuterostomes (e.g. vertebrates and echinoderms) and protostomes. Phylogenetic analysis of the relationship of vertebrate CB1 receptors with other G-protein-coupled receptors reveals that the paralogues that appear to share the most recent common evolutionary origin with CB1 are lysophospholipid receptors, melanocortin receptors and adenosine receptors. Interestingly, as with CB1, each of these receptor types does not appear to have Drosophila orthologues, indicating that this group of receptors may not occur in protostomian invertebrates. We conclude that the cannabinoid signalling system may be quite restricted in its phylogenetic distribution, probably occurring only in the deuterostomian clade of the animal kingdom and possibly only in vertebrates.”

http://www.ncbi.nlm.nih.gov/pubmed/11316486

The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases.

Abstract

“During immuno-mediated attack of the brain, activation of endocannabinoids represents a protective mechanism, aimed at reducing both neurodegenerative and inflammatory damage through various and partially converging mechanisms that involve neuronal and immune cells. Here, we review the main alterations of the endocannabinoid system (ECS) within the central nervous system and in peripheral blood mononuclear cells, in order to discuss the intriguing observation that elements of the peripheral ECS mirror central dysfunctions of endocannabinoid signaling. As a consequence, elements of blood ECS might serve as novel, non-invasive diagnostic tools of several neurological disorders, and targeting the ECS might be useful for therapeutic purposes. In addition, we discuss the appealing working hypothesis that the presence of type-1 cannabinoid receptors on the luminal side, and that of type-2 cannabinoid receptors on the abluminal side of the blood-brain barrier, could drive a unidirectional transport of AEA in the luminal –> abluminal direction (i.e., from blood to brain), thus implying that blood may be a reservoir of AEA for the brain. On this basis, it can be expected that an unbalance of the endogenous tone of AEA in the blood may sustain a similar unbalance of its level within the brain, as demonstrated in Huntington’s disease, Parkinson’s disease, multiple sclerosis, attention-deficit/hyperactivity disorder, schizophrenia, depression and headache.”

http://www.ncbi.nlm.nih.gov/pubmed/18781987

Nonpsychotropic Cannabinoid Receptors Regulate Microglial Cell Migration

“During neuroinflammation, activated microglial cells migrate toward dying neurons, where they exacerbate local cell damage. The signaling molecules that trigger microglial cell migration are poorly understood. In this paper, we show that pathological overstimulation of neurons by glutamate plus carbachol dramatically increases the production of the endocannabinoid 2-arachidonylglycerol (2-AG) but only slightly increases the production of anandamide and does not affect the production of two putative endocannabinoids, homo-γ-linolenylethanolamide and docosatetraenylethanolamide. We further show that pathological stimulation of microglial cells with ATP also increases the production of 2-AG without affecting the amount of other endocannabinoids. Using a Boyden chamber assay, we provide evidence that 2-AG triggers microglial cell migration. This effect of 2-AG occurs through CB2 and abnormal-cannabidiol-sensitive receptors, with subsequent activation of the extracellular signal-regulated kinase 1/2 signal transduction pathway. It is important to note that cannabinol and cannabidiol, two nonpsychotropic ingredients present in the marijuana plant, prevent the 2-AG-induced cell migration by antagonizing the CB2 and abnormal-cannabidiol-sensitive receptors, respectively. Finally, we show that microglial cells express CB2 receptors at the leading edge of lamellipodia, which is consistent with the involvement of microglial cells in cell migration. Our study identifies a cannabinoid signaling system regulating microglial cell migration. Because this signaling system is likely to be involved in recruiting microglial cells toward dying neurons, we propose that cannabinol and cannabidiol are promising nonpsychotropic therapeutics to prevent the recruitment of these cells at neuroinflammatory lesion sites.”

“Because marijuana produces remarkable beneficial effects, patients with multiple sclerosis, for example, commonly use this plant as a therapeutic agent; however, we still lack essential information on the mechanistic basis of these beneficial effects.”

“The marijuana plant, Cannabis sativa, contains >60 cannabinoid compounds, the best known being Δ9-tetrahydrocannabinol (THC), cannabinol (CBN), and cannabidiol (CBD) (for review, see. Cannabinoid compounds produce their biological effects by acting through at least three cannabinoid receptors (see Table1). These include the cloned cannabinoid CB1 receptors, which are expressed predominately in the CNS, the cloned cannabinoid CB2 receptors, which are expressed predominately by immune cells, and the abnormal-cannabidiol-sensitive receptors (hereafter referred to as abn-CBD receptors). The latter receptors have not been cloned yet, but they have been pinpointed pharmacologically in mice lacking CB1 and CB2 receptors and are also known as anandamide (AEA) receptors.”

“We also show that CBN and CBD, two nonpsychotropic bioactive compounds of marijuana, may antagonize the 2-AG-induced recruitment of microglial cells. This is in agreement with the fact that nabilone, a synthetic analog of THC, produces minimal palliative effects against multiple sclerosis symptoms, whereas smoking cannabis is reported to be beneficial. Therefore, our results suggest that bioactive cannabinoids present in the marijuana plant, such as CBN and CBD, are likely to underlie the increased efficacy of cannabis versus nabilone and therefore hold promise as nonpsychotropic therapeutics to treat neuroinflammation.”

http://www.jneurosci.org/content/23/4/1398.long

Inflammation and aging: can endocannabinoids help?

“Aging often leads to cognitive decline due to neurodegenerative process in the brain. As people live longer, a growing concern exist linked to long-term, slowly debilitating diseases that have not yet found a cure, such as Alzheimer’s disease. Recently, the role of neuroinflammation has attracted attention due to its slow onset, chronic nature and its possible role in the development of many different neurodegenerative diseases. In the future, treatment of chronic neuroinflammation may help counteract aspects of neurodegenerative disease. Our recent studies have focused upon the endocannabinoid system for its unique effects on the expression of neuroinflammation. The basis for the manipulation of the endocannabinoid system in the brain in combination with existing treatments for Alzheimer’s disease will be discussed in this review.”

“Endocannabinoids

Cannabinoid refers to naturally occurring or synthetic molecules mimicking the activity of plant-derived cannabinoids from Cannabis Sativa. Two types of cannabinoid receptors have been so far identified in the body, named CB1 and CB2. Discovery of cannabinoid receptors (CBr) lead to the finding of endogenous agonists for these receptors called endocannabinoids (EC). EC are derived from arachidonic acid, arachidonoylethanolamide (anandamide), and 2-arachidonoyl glycerol (2-AG), synthesized on-demand post-synaptically and released in response to the entry of calcium ions. These EC in combination with the two known CBr constitute the endocannabinoid system (ECS). In the central nervous system (CNS), CB1 is overwhelmingly represented over CB2 and particularly abundant in cortical regions, the hippocampus, cerebellum and basal ganglia while CB2 may be restricted to microglia or neurons in the brainstem  and cerebellum. Deactivation of the EC is due to a rapid enzymatic degradation in the synaptic cleft or after membrane transport. The ECS is thought to be a neuromodulator and an immunomodulator. In the CNS, the ECS can influence food intake, endocrine release, motor control, cognitive processes, emotions and perception. Cannabinoids treatment has been shown to be neuroprotective under many experimental conditions. Drugs that manipulate the ECS are currently evaluated in various diseases ranging from cancer to AIDS for their peripheral analgesic and immunosuppressive properties. Their anti-inflammatory actions may make them useful in the treatment of multiple sclerosis, Parkinson’s disease and AD. Very little in vivo evidence to support the use of EC receptor agonists has been reported, although in vitro studies have found evidence for their anti-inflammatory effectiveness. Our recent work demonstrated the anti-inflammatory effect of a chronic treatment of a low dose of the CBr agonist WIN-55,212-2 (without psychoactive effects) on the consequences of chronic neuroinflammation induced by the infusion of LPS into the 4th ventricle of young rats. Moreover, that same anti-inflammatory effect was found using a non-psychoactive dose given by slow subcutaneous infusion of WIN-55,212-2 to healthy aged rats; these rats also demonstrated improved spatial memory. Our ongoing work in aged rats has shown that treatment with the CBr agonist WIN-55,212-2 increases neurogenesis in the hippocampus. Our preliminary data suggest that the neurogenic and anti-inflammatory effects in aged rats are due to the agonist/antagonist properties of WIN-55,212-2 at multiple receptors.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408719/

The endocannabinoid system in ageing: a new target for drug development.

Abstract

“Endocannabinoids are a new class of lipids, which include amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol are the main endogenous agonists of cannabinoid receptors able to mimic several pharmacological effects of Delta(9)-tetrahydrocannabinol, the active principle of Cannabis sativa preparations like hashish and marijuana. AEA is released “on demand” from membrane lipids, and its activity at the receptors is limited by cellular uptake followed by intracellular hydrolysis. Together with AEA and congeners, the proteins which bind, synthesize, transport and hydrolyze AEA form the “endocannabinoid system”. Endogenous cannabinoids are present in the central nervous system and in peripheral tissues, suggesting a physiological role as broad spectrum modulators. This review summarizes the main features of the endocannabinoid system, and the latest advances on its involvement in ageing of central and peripheral cells. In addition, the therapeutic potential of recently developed drugs able to modulate the endocannabinoid tone for the treatment of ageing and age-related human pathologies will be reviewed.”

http://www.ncbi.nlm.nih.gov/pubmed/17100593

Role of endocannabinoids and cannabinoid CB1 receptors in alcohol-related behaviors.

Abstract

“This review presents the remarkable research during the past several years indicating that some of the pharmacological and behavioral effects of alcohol, including alcohol drinking and alcohol-preferring behavior, are mediated through one of the most abundant neurochemical systems in the central nervous system, the endocannabinoid signaling system. The advances, with the discovery of specific receptors and the existence of naturally occurring cannabis-like substances in the mammalian system and brain, have helped in understanding the neurobiological basis for drugs of abuse, including alcoholism. The cDNA and genomic sequences encoding G-protein-coupled cannabinoid receptors (CB1 and CB2) from several species have now been cloned. This has facilitated discoveries of endogenous ligands (endocannabinoids). To date, two fatty acid derivatives characterized to be arachidonylethanolamide and 2-arachidonylglycerol have been isolated from both nervous and peripheral tissues. Both these compounds have been shown to mimic the pharmacological and behavioral effects of Delta9-tetrahydrocannabinol, the psychoactive component of marijuana. The involvement of the endocannabinoid signaling system in tolerance development to drugs of abuse, including alcohol, were unknown until recently. Studies from our laboratory demonstrated for the first time the downregulation of CB1 receptor function and its signal transduction by chronic alcohol. The observed downregulation of CB1 receptor binding and its signal transduction results from the persistent stimulation of receptors by the endogenous CB1 receptor agonists arachidonylethanolamide and 2-arachidonylglycerol, the synthesis of which is increased by chronic alcohol treatment. The deletion of CB1 receptor has recently been shown to block voluntary alcohol intake in mice, which is consistent with our previous findings where the DBA/2 mice known to avoid alcohol intake had significantly reduced brain CB1 receptor function. These findings suggest a role for the CB1 receptor gene in excessive alcohol drinking behavior and development of alcoholism. Ongoing investigations may lead to the development of potential therapeutic agents to modulate the endocannabinoid signaling system, which will be helpful for the treatment of alcoholism.”

http://www.ncbi.nlm.nih.gov/pubmed/15542757

Neuromodulatory role of the endocannabinoid signaling system in alcoholism: an overview.

Abstract

“The current review evaluates the evidence that some of the pharmacological and behavioral effects of ethanol (EtOH), including EtOH-preferring behavior, may be mediated through the endocannabinoid signaling system. The recent advances in the understanding of the neurobiological basis of alcoholism suggest that the pharmacological and behavioral effects of EtOH are mediated through its action on neuronal signal transduction pathways and ligand-gated ion channels, receptor systems, and receptors that are coupled to G-proteins. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB1 receptor) that was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. To date, two fatty acid derivatives identified to be arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) have been isolated from both nervous and peripheral tissues. Both these compounds have been shown to mimic the pharmacological and behavioral effects of Delta(9)-THC. The involvement of the endocannabinoid signaling system in the development of tolerance to the drugs of abuse including EtOH has not been known until recently. Recent studies from our laboratory have demonstrated for the first time the down-regulation of CB1 receptor function and its signal transduction by chronic EtOH. The observed down-regulation of CB1 receptor binding and its signal transduction results from the persistent stimulation of the receptors by the endogenous CB1 receptor agonists, AEA and 2-AG, the synthesis of which has been found to be increased by chronic EtOH treatment. This enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid EtOH intake, have significantly reduced brain-CB1-receptor function consistent with other studies, where the CB1 receptor antagonist SR141716A has been shown to block voluntary EtOH intake in rodents. Similarly, activation of the CB1 receptor system promoted alcohol craving, suggesting a role for the CB1 receptor gene in excessive EtOH drinking behavior and development of alcoholism. Ongoing investigations may lead to the development of potential therapeutic strategies for the treatment of alcoholism.”

http://www.ncbi.nlm.nih.gov/pubmed/12052043

ROLE OF THE ENDOCANNABINOID SYSTEM IN THE DEVELOPMENT OF TOLERANCE TO ALCOHOL

“Alcohol dependence is a leading cause of morbidity and various medical and socio-economic problems. It is defined by compulsive, excessive use of alcohol despite negative consequences. Alcohol dependence is usually accompanied by tolerance to the intoxicating effects of alcohol and by withdrawal symptoms including tremors and confusion when consumption of alcohol ceases. Although important advances have been made in recent years in understanding the mechanisms underlying the development of tolerance to and dependence on alcohol, the exact mechanisms are still elusive. The present article reviews the role played by the endocannabinoid system in the molecular mechanism involved in the development of alcohol tolerance, which possibly influences alcohol-drinking behaviour.”

“The present review evaluates the evidence that the endocannabinoid system plays in the development of tolerance to alcohol. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB1 receptor), which was activated by Δ9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. Until now, four fatty acid derivatives identified to be arachidonylethanolamide (AEA), 2-arachidonylglycerol (2-AG), 2-arachidonylglycerol ether (noladin ether) and virodhamine have been isolated from both nervous and peripheral tissues. Both AEA and 2-AG have been shown to mimic the pharmacological and behavioural effects of Δ9-THC. The role of the endocannabinoid system in the development of tolerance to alcohol was not known until recently. Recent studies from our laboratory have implicated for the first time a role for the endocannabinoid system in development of tolerance to alcohol. Chronic alcohol treatment has been shown to down-regulate CB1 receptors and its signal transduction. The observed downregulation of CB1 receptor function results from the persistent stimulation of the receptors by AEA and 2-AG, the synthesis of which has been shown to be increased by chronic alcohol treatment. The enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid alcohol intake, have significantly reduced CB1 receptor function in the brain, consistent with other studies in which the CB1 receptor antagonist SR 141716A has been shown to block voluntary alcohol intake in rodents. Similarly, activation of the CB1 receptor system promoted alcohol craving, suggesting a role for the CB1 receptor gene in excessive alcohol drinking behaviour and development of alcoholism. Ongoing investigations may lead to a better understanding of the mechanisms underlying the development of tolerance to alcohol and to develop therapeutic strategies to treat alcoholism.”

“CONCLUSION

Over the past seven years, remarkable advances have been made towards our understanding of the role played by the endocannabinoid system in the development of alcohol tolerance and alcohol-drinking behaviour. These studies have provided strong evidence that CB1 receptors and the endocannabinoid system serve as an attractive therapeutic target for the treatment of alcohol tolerance and alcohol-related disorders. The data reviewed here provide convincing evidence that alcohol tolerance involves the downregulation of the CB1 receptor and its function. The observed neuro-adaptation may be due to increased accumulation of the endocannabinoids AEA and 2-AG. Treatment with the CB1 receptor antagonist SR 141716A led to reduced consumption of alcohol in rodents and activation of the same endogenous cannabinoid systems by the CB1 receptor agonist promoted alcohol craving, which may be related to the change in the levels of dopamine in the NAc. Further, reduced alcohol intake by the CB1 receptor knockout mice is consistent with our previous observation that significantly lower levels of functional CB1 receptors are found in the alcohol-avoiding DBA/2 mouse strain compared with the alcohol-preferring C57BL/6 mouse strain. These observations suggest the involvement of the CB1 receptors in controlling voluntary alcohol consumption and the involvement of the endocannabinoid system in the development of alcohol tolerance. However, further studies are necessary to unfold the exact mechanism by which alcohol exerts its pharmacological and behavioural effects through the endocannabinoid system. The investigation of the detailed signalling cascade for the actions of both endocannabinoids and CB1 receptors will be of great value in understanding their physiological and functional role in several neurological disorders, voluntary alcohol intake and alcohol craving, including the behavioural neuroadaptation to alcohol. Such studies may also lead to the development of endocannabinoid signalling-targeted drugs, which may help to reduce both alcohol intake and alcohol craving. These results suggest that the cannabinoid antagonist, SR 141716A, may be useful as a potential therapeutic agent in alcohol dependence.”

http://www.ncbi.nlm.nih.gov/pubmed/15550443

http://alcalc.oxfordjournals.org/content/40/1/15.long

The endocannabinoid signaling system: a potential target for next-generation therapeutics for alcoholism

“Alcoholism is a complex disorder affecting modern society in many ways, yet there are few effective treatment strategies currently available.”

“Research into the endocannabinoid signaling system has grown exponentially in recent years following the discovery of cannabinoid receptors (CB) and their endogenous ligands, such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Important advances have been made in our understanding of the endocannabinoid signaling system in various aspects of alcoholism, including alcohol-seeking behavior. Alcohol increases the synthesis or impairs the degradation of endocannabinoids, leading to a locally elevated endocannabinoid tone within the brain. Elevated endocannabinoid tone might be expected to result in compensatory down-regulation of CB1 receptors or dampened signal transduction. Following release, endocannabinoids diffuse back to the presynaptic neuron where they act as short-range modulators of synaptic activity by altering neurotransmitter release and synaptic plasticity. Mice treated with the CB1 receptor antagonist SR141716A (rimonabant) or homozygous for a deletion of the CB1 receptor gene exhibit reduced voluntary alcohol intake. CB1 knockout mice also show increased alcohol sensitivity, withdrawal, and reduced conditioned place preference. Conversely, activation of CB1 receptor promotes alcohol intake. Recent studies also suggest that elevated endocannabinoid tone due to impaired degradation contributes to high alcohol preference and self-administration. These effects are reversed by local administration of rimonabant, suggesting the participation of the endocannabinoid signaling system in high alcohol preference and self-administration. These recent advances will be reviewed with an emphasis on the endocannabinoid signaling system for possible therapeutic interventions of alcoholism.”

“Overwhelmingly, recent studies suggest that cannabinoids and alcohol activate similar reward pathways. The CB1 receptors also seem to regulate the reinforcing properties of alcohol. The discovery of cannabinoid receptors and their endogenous ligands set a landmark in cannabinoid research. These discoveries impacted significantly on alcohol research, too, since there is now considerable evidence that endocannabinoid signaling plays a key role in alcohol addiction, and this has promising clinical consequences. The purpose of this article is to analyze the interaction between alcohol and endocannabinoid signaling, paying particular attention to the reward mechanism. Therapeutic aspects driving from these new insights are also discussed.”

“THERAPEUTIC OPPORTUNITY”

“Although the detailed physiology, biochemistry and pathophysiology of the endocannabinoid signaling system have not been fully investigated, there is already overwhelming evidence to indicate that pharmacological modulation of the endocannabinoid signaling system could provide new treatments for a number of disease states, including alcohol addiction. Recently it was reported that rimonabant holds an important therapeutic role in treating liver fibrosis and alcohol abuse accounts for more than half of the prevalence of liver fibrosis and cirrhosis in the western world. Therefore, it is important to examine whether alcohol-induced liver fibrosis and cirrhosis results in increased endocannabinoid levels and rimonabant reverses alcohol-induced liver fibrosis/cirrhosis. In terms of drug development, the CB1 receptor antagonist rimonabant has progressed furthest and is in late phase III trials for the treatment of obesity and as an aid for smoking cessation. An NIAAA clinical study of the effectiveness of rimonabant to reduce voluntary alcohol drinking has progressed to phase I trials. Pending results of the clinical trials, rimonabant could become an important addition to the limited arsenal of effective treatments for alcoholism. During drug abuse there are changes in endocannabinoid levels in various brain regions. Therefore, drugs which regulate the level of endocannabinoids by inhibiting their metabolism (FAAH inhibitors such as URB597) or uptake (AM404) could locally target sites while limiting effects in uninvolved cognitive areas to produce a higher therapeutic value. Cannabinoid interactions with the dopamine system have been offered as a possible mechanism for some of the therapeutic potential of cannabinoid-based drugs in alcoholism. A recent study provides evidence of the ability of CB1 receptor antagonist to mitigate alcohol-withdrawal symptoms, and block the formation of physical dependency by inhibiting alcohol intake. Recent data on the role of CB1 receptors in alcohol drinking behavior, including alcohol tolerance as discussed in the earlier sections, clearly suggest that agents such as CB1 receptor antagonists, including rimonabant, will be promising therapeutic agents for the treatment of alcoholism.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1975858/

The Endogenous Cannabinoid System Modulates Nicotine Reward and Dependence

Abstract

“A growing body of evidence suggests that the endogenous cannabinoid system modulates the addictive properties of nicotine, the main component of tobacco that produces rewarding effects. In our study, complementary transgenic and pharmacological approaches were used to test the hypothesis that the endocannabinoid system modulates nicotine reward and dependence. An acute injection of nicotine elicited normal analgesic and hypothermic effects in cannabinoid receptor (CB)(1) knockout (KO) mice and mice treated with the CB(1) antagonist rimonabant. However, disruption of CB(1) receptor signaling blocked nicotine reward, as assessed in the conditioned place preference (CPP) paradigm. In contrast, genetic deletion, or pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for catabolism of the endocannabinoid anandamide, enhanced the expression of nicotine CPP. Although the expression of spontaneous nicotine withdrawal (14 days, 24 mg/kg/day nicotine) was unaffected in CB(1) KO mice, acute administration of rimonabant (3 mg/kg) ameliorated somatic withdrawal signs in wild-type mice. Increasing endogenous levels of anandamide through genetic or pharmacological approaches exacerbated the physical somatic signs of spontaneous nicotine withdrawal in a milder withdrawal model (7 days, 24 mg/kg/day nicotine). Moreover, FAAH-compromised mice displayed increased conditioned place aversion in a mecamylamine-precipitated model of nicotine withdrawal. These findings indicate that endocannabinoids play a role in the rewarding properties of nicotine as well as nicotine dependence liability. Specifically, increasing endogenous cannabinoid levels magnifies, although disrupting CB(1) receptor signaling, attenuates nicotine reward and withdrawal. Taken together, these results support the hypothesis that cannabinoid receptor antagonists may offer therapeutic advantages to treat tobacco dependence.”

“In conclusion, we have shown that the endocannabinoid system modulates various aspects of nicotine dependence in a differential way. Indeed, FAAH inhibition dramatically enhances nicotine reward through a CB1 mechanism that is most likely due to elevated levels of AEA. Moreover, our findings indicate that endogenous cannabinoid tone indirectly modulates the development of nicotine addiction by affecting the balance between the rewarding and aversive properties of nicotine.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746999/