Cannabinoid (CB1) Receptor Activation Inhibits Trigeminovascular Neurons

Abstract

“Migraine is a common and disabling neurological disorder that involves activation or the perception of activation of the trigeminovascular system. Cannabinoid (CB) receptors are present in brain and have been suggested to be antinociceptive. Here we determined the effect of cannabinoid receptor activation on neurons with trigeminovascular nociceptive input in the rat. Neurons in the trigeminocervical complex (TCC) were studied using extracellular electrophysiological techniques. Responses to both dural electrical stimulation and cutaneous facial receptive field activation of the ophthalmic division of the trigeminal nerve and the effect of cannabinoid agonists and antagonists were studied. Nonselective CB receptor activation with R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2, 3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl) (WIN55,212; 1 mg kg(-1)) inhibited neuronal responses to A-(by 52%) and C-fiber (by 44%) afferents, an effect blocked by the CB(1) receptor antagonist SR141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; 3 mg kg(-1)] but not the CB2 receptor antagonist AM630 (6-iodopravadoline; 3 mg kg(-1)). Anandamide (10 mg kg(-1)) was able to inhibit both A- and C-fiber-elicited TCC firing, only after transient receptor potential vanilloid 1 receptor inhibition. Activation of cannabinoid receptors had no effect on cutaneous receptive fields when recorded from TCC neurons. The data show that manipulation of CB1 receptors can affect the responses of trigeminal neurons with A- and C-fiber inputs from the dura mater. This may be a direct effect on neurons in the TCC itself or an effect in discrete areas of the brain that innervate these neurons. The data suggest that CB receptors may have therapeutic potential in migraine, cluster headache, or other primary headaches, although the potential hazards of psychoactive side effects that accompany cannabinoid treatments may be complex to overcome.”

“In conclusion, activation of CB1 receptors is able to inhibit trigeminal neurons with A-fiber and C-fiber input in the TCC in response to activation of the ophthalmic division of the trigeminal nerve. Anandamide was only able to inhibit neurons with A-fiber inputs after inhibition of the TRPV1 receptor, highlighting the dual agonist properties of anandamide in the brain. These results support an involvement of the cannabinoid CB1 receptor and TRPV1 receptors in trigeminal neuronal firing, helping to further understand the pathophysiology of the trigeminovascular system and indicate potential directions for the development of new therapeutic agents, notwithstanding the potential difficulties of the psychoactive side effects accompanying cannabinoid treatments.”

http://jpet.aspetjournals.org/content/320/1/64.long

Degradation of endocannabinoids in chronic migraine and medication overuse headache.

Abstract

“Chronic migraine (CM) is frequently associated with medication overuse headache (MOH). The endocannabinoid system plays a role in modulating pain including headache and is involved in the common neurobiological mechanism underlying drug addiction and reward system. Anandamide (AEA) and 2-arachidonoylglycerol are the most biologically active endocannabinoids, which bind to both central and peripheral cannabinoid receptors. The level of AEA in the extracellular space is controlled by cellular uptake via a specific AEA membrane transporter (AMT), followed by intracellular degradation by the enzyme AEA hydrolase (fatty acid amide hydrolase, FAAH). AMT and FAAH have also been characterized in human platelets. We assayed the activity of AMT and of FAAH in platelets isolated from four groups of subjects: MOH, CM without MOH, episodic migraine and controls. AMT and FAAH were significantly reduced in CM and MOH, compared to either controls or episodic migraine group. This latter finding was observed in both males and females with CM and MOH. Changes observed in the biochemical mechanisms degrading endogenous cannabinoids may reflect an adaptative behaviour induced by chronic headache and/or drug overuse.”

http://www.ncbi.nlm.nih.gov/pubmed/18358734

Alterations of the endocannabinoid system in an animal model of migraine: evaluation in cerebral areas of rat.

Abstract

“Endocannabinoids are involved in the modulation of pain and hyperalgesia. In this study we investigated the role of the endocannabinoid system in the migraine model based on nitroglycerin-induced hyperalgesia in the rat. Male rats were injected with nitroglycerin (10 mg/kg, i.p.) or vehicle and sacrificed 4 h later. The medulla, the mesencephalon and the hypothalamus were dissected out and utilized for the evaluation of activity of fatty acid amide hydrolase (that degrades the endocannabinoid anandamide), monoacylglycerol lipase (that degrades the endocannabinoid 2-arachidonoylglycerol), and binding sites specific for cannabinoid (CB) receptors. The findings obtained show that nitroglycerin-induced hyperalgesia is associated with increased activity of both hydrolases and increased density of CB binding sites in the mesencephalon. In the hypothalamus we observed an increase in the activity of fatty acid amide hydrolase associated with an increase in density of CB binding sites, while in the medulla only the activity of fatty acid amide hydrolase was increased. Anandamide also proved effective in preventing nitroglycerin-induced activation (c-Fos) of neurons in the nucleus trigeminalis caudalis. These data strongly support the involvement of the endocannabinoid system in the modulation of nitroglycerin-induced hyperalgesia, and, possibly, in the pathophysiological mechanisms of migraine.”

http://www.ncbi.nlm.nih.gov/pubmed/19515121

Effects of anandamide in migraine: data from an animal model.

Abstract

“Systemic nitroglycerin (NTG) produces spontaneous-like migraine attacks in migraine sufferers and induces a condition of hyperalgesia in the rat 4 h after its administration. Endocannabinoid system seems to be involved in the modulation of NTG-induced hyperalgesia, and probably, in the pathophysiological mechanisms of migraine. In this study, the analgesic effect of anandamide (AEA) was evaluated by means of the formalin test, performed in baseline conditions and following NTG-induced hyperalgesia in male Sprague-Dawley rats. AEA was administered 30 min before the formalin injection. In addition, the effect of AEA (administered 30 min before NTG injection) was investigated on NTG-induced Fos expression and evaluated 4 h following NTG injection. AEA induced a significant decrease in the nociceptive behavior during both phases of the formalin test in the animals treated with vehicle, while it abolished NTG-induced hyperalgesia during the phase II. Pre-treatment with AEA significantly reduced the NTG-induced neuronal activation in nucleus trigeminalis caudalis, confirming the results obtained in our previous study, and in area postrema, while the same treatment induced an increase of Fos expression in paraventricular and supraoptic nuclei of the hypothalamus, parabrachial nucleus, and periaqueductal grey. The study confirms that a dysfunction of the endocannabinoid system may contribute to the development of migraine attacks and that a pharmacological modulation of CB receptors can be useful for the treatment of migraine pain.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072518/

Endocannabinoids in Chronic Migraine: CSF Findings Suggest a System Failure

Abstract

“Based on experimental evidence of the antinociceptive action of endocannabinoids and their role in the modulation of trigeminovascular system activation, we hypothesized that the endocannabinoid system may be dysfunctional in chronic migraine (CM). We examined whether the concentrations of N-arachidonoylethanolamide (anandamide, AEA), palmitoylethanolamide (PEA), and 2-arachidonoylglycerol (2-AG) in the CSF of patients with CM and with probable CM and probable analgesic-overuse headache (PCM+PAOH) are altered compared with control subjects. The above endocannabinoids were measured by high-performance liquid chromatography (HPLC), and quantified by isotope dilution gas-chromatography/mass-spectrometry. Calcitonin gene-related peptide (CGRP) levels were also determined by RIA method and the end products of nitric oxide (NO), the nitrites, by HPLC. CSF concentrations of AEA were significantly lower and those of PEA slightly but significantly higher both in patients with CM and PCM+PAOH than in nonmigraineur controls (p<0.01 and p<0.02, respectively). A negative correlation was found between AEA and CGRP levels in CM and PCM+PAOH patients (r=0.59, p<0.01 and r=-0.65, p<0.007; respectively). A similar trend was observed between this endocannabinoid and nitrite levels. Reduced levels of AEA in the CSF of CM and PCM+PAOH patients may reflect an impairment of the endocannabinoid system in these patients, which may contribute to chronic head pain and seem to be related to increased CGRP and NO production. These findings support the potential role of the cannabinoid (CB)1 receptor as a possible therapeutic target in CM.

A clinical endocannabinoid deficiency (CECD) has been hypothesized to underlie the pathophysiology of migraine, fibromyalgia, irritable bowel syndrome (IBS), and other functional conditions alleviated by clinical cannabis but no clear evidence to support this deficiency has been reported until now in this regard (Russo, 2004).”

http://www.nature.com/npp/journal/v32/n6/full/1301246a.html

Cannabimimetic fatty acid derivatives in cancer and inflammation.

“Evidence for the role of the cannabimimetic fatty acid derivatives (CFADs), i.e. anandamide (arachidonoylethanolamide, AEA), 2-arachidonoylglycerol (2-AG) and palmitoylethanolamide (PEA), in the control of inflammation and of the proliferation of tumor cells is reviewed here. The biosynthesis of AEA, PEA, or 2-AG can be induced by stimulation with either Ca(2+) ionophores, lipopolysaccharide, or platelet activating factor in macrophages, and by ionomycin or antigen challenge in rat basophilic leukemia (RBL-2H3) cells (a widely used model for mast cells). These cells also inactivate CFADs through re-uptake and/or hydrolysis and/or esterification processes. AEA and PEA modulate cytokine and/or arachidonate release from macrophages in vitro, regulate serotonin secretion from RBL-2H3 cells, and are analgesic in some animal models of inflammatory pain. However, the involvement of endogenous CFADs and cannabinoid CB(1) and CB(2) receptors in these effects is still controversial. In human breast and prostate cancer cells, AEA and 2-AG, but not PEA, potently inhibit prolactin and/or nerve growth factor (NGF)-induced cell proliferation. Vanillyl-derivatives of anandamide, such as olvanil and arvanil, exhibit even higher anti-proliferative activity. These effects are due to suppression of the levels of the 100 kDa prolactin receptor or of the high affinity NGF receptors (trk), are mediated by CB(1)-like cannabinoid receptors, and are enhanced by other CFADs. Inhibition of adenylyl cyclase and activation of mitogen-activated protein kinase underlie the anti-mitogenic actions of AEA. The possibility that CFADs act as local inhibitors of the proliferation of human breast cancer is discussed here.”

http://www.ncbi.nlm.nih.gov/pubmed/10785541

Omega-3 N-acylethanolamines are endogenously synthesised from omega-3 fatty acids in different human prostate and breast cancer cell lines.

“Omega-3 (n-3) fatty acids inhibit breast and prostate cancer cell growth. We previously showed that N-acylethanolamine derivatives of n-3 (n-3-NAE) are endocannabinoids, which regulate cancer cell proliferation. These n-3-NAE are synthesised in certain cells/tissues, after supplementing with fatty acids, however, no one has assessed whether and to what extent this occurs in cancer cells. We determined levels of endogenous n-3-NAEs in hormone sensitive and insensitive prostate and breast cancer cells and subsequent effects on other endocannabinoids (anandamide and 2-arachidonoylglycerol), before and after supplementing with DHA and EPA fatty acids, using HPLC tandem mass spectrometry. This is the first study reporting that n-3-NAEs are synthesised from their parent n-3 fatty acids in cancer cells, regardless of tumour type, hormone status or the presence of fatty acid amide hydrolase. This could have important implications for the use of n-3 fatty acids as therapeutic agents in breast and prostate cancers expressing cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/21995886

Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells.

“This study was designed to determine the molecular mechanisms underlying the anti-proliferative effect of the endocannabinoid anandamide on highly invasive human breast cancer cells, MDA-MB-231. We show that a metabolically stable analogue of anandamide, Met-F-AEA, induces an S phase growth arrest correlated with Chk1 activation, Cdc25A degradation and suppression of Cdk2 activity. These findings demonstrate that Met-F-AEA induced cell cycle blockade relies on modulated expression and activity of key S phase regulatory proteins. The observed mechanism of action, already reported for well-known chemotherapeutic drugs, provides strong evidence for a direct role of anandamide related compounds in the activation of cell cycle checkpoints.”

http://www.ncbi.nlm.nih.gov/pubmed/17055492

The anandamide analog, Met-F-AEA, controls human breast cancer cell migration via the RHOA/RHO kinase signaling pathway.

“The endocannabinoid system regulates cell proliferation and migration in human breast cancer cells. In this study, we showed that a metabolically stable analog of anandamide, 2-methyl-2′-F-anandamide (Met-F-AEA), inhibited the RHOA activity and caused a RHOA delocalization from the cell membrane to cytosol determining a decrease in actin stress fibers. Overexpression of a dominant negative of RHOA activity and treatment of these cells with a RHO-associated protein kinase (ROCK) inhibitor, Y 27632, mimicked Met-F-AEA effects on actin organization and cell migration. We suggest that the inhibitory effect of Met-F-AEA on tumor cell migration could be related to RHOA-ROCK-dependent signaling pathway.”

http://www.ncbi.nlm.nih.gov/pubmed/18676619

Anandamide inhibits the Wnt/β-catenin signalling pathway in human breast cancer MDA MB 231 cells.

“We previously showed that methyl-F-anandamide, a stable analogue of the anandamide, inhibited the growth and the progression of cultured human breast cancer cells. As accumulating evidences indicate that the constitutive activation of the canonical Wnt pathway in human breast cancer may highlight a key role for aberrant activation of the β-catenin-TCF cascade and tumour progression, we studied the anandamide effect on the key elements of Wnt pathway in breast cancer cells. In this study we described that the treatment of human breast cancer cells, MDA MB 231 cells, with methyl-F-anandamide reduced protein levels of β-catenin in the cytoplasmic and nuclear fractions inhibiting the transcriptional activation of T Cell Factor (TCF) responsive element (marker for β-catenin signalling). The anandamide treatment resulted in up-regulation of epithelial markers, like E-cadherin with a concomitant decrease in protein levels of mesenchymal markers, including vimentin and Snail1. We, furthermore, observed that the induction of experimental epithelial-mesenchymal transition by exposure to adriamycin in MCF7 human breast cancer cell line was inhibited by anandamide treatment. In the present study we reported a novel anticancer effect of anandamide involving the inhibition of epithelial-mesenchymal transition, a process triggered during progression of cancer to invasive state.”

http://www.ncbi.nlm.nih.gov/pubmed/22425263