Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder.

Image result for bmc veterinary research

“Epilepsy is one of the most common chronic neurological disorders in dogs characterized by recurrent seizures. The endocannabinoid (EC) system plays a central role in suppressing pathologic neuronal excitability and in controlling the spread of activity in an epileptic network. Endocannabinoids are released on demand and their dysregulation has been described in several pathological conditions. Recurrent seizures may lead to an adverse reorganization of the EC system and impairment of its protective effect. In the current study, we tested the hypothesis that cerebrospinal fluid (CSF) concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2AG) are altered in epileptic dogs. Concentrations of AEA and total AG (sum of 2AG and 1AG) were measured in 40 dogs with idiopathic epilepsy and in 16 unaffected, healthy control dogs using liquid chromatography combined with tandem mass spectrometry.

RESULTS:

AEA and total AG were measured at 4.94 (3.18 – 9.17) pM and 1.43 (0.90 – 1.92) nM in epileptic dogs and at 3.19 (2.04 – 4.28) pM and 1.76 (1.08 – 2.69) nM in the control group, respectively (median, 25 – 75% percentiles in brackets). The AEA difference between epileptic and healthy dogs was statistically significant (p < 0.05). Values correlated with seizure severity and duration of seizure activity. Dogs with cluster seizures and/or status epilepticus and with seizure activity for more than six months displayed the highest EC concentrations.

CONCLUSION:

In conclusion, we present the first endocannabinoid measurements in canine CSF and confirm the hypothesis that the EC system is altered in canine idiopathic epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/24370333

“In conclusion, we demonstrated an elevation of CSF AEA concentrations in dogs with idiopathic epilepsy. The highest AEA concentrations were found in dogs with severe seizures and a long disease history. Possibly, the activation of the EC system serves as a counter-mechanism in order to regulate the seizure-threshold in epilepsy. However, the EC system can either alter or be altered by seizure activity, so that further, prospective studies are warranted to investigate pathological mechanisms. Despite endocannabinoids can be synthesized “on demand”, the EC system should be considered for development of new treatment strategies against epilepsy.”

https://bmcvetres.biomedcentral.com/articles/10.1186/1746-6148-9-262

Endocannabinoid tone regulates human sebocyte biology.

JID home

“We have previously shown that i) endocannabinoids (eCB; e.g. anandamide [AEA]) are involved in the maintenance of homeostatic sebaceous lipid production (SLP) in human sebaceous glands (SG); and ii) eCB treatment dramatically increases SLP. Here, we aimed to investigate the expression of the major eCB synthesizing and degrading enzymes, and to study the effects of eCB uptake inhibitors on human SZ95 sebocytes, thus exploring the role of the putative eCB membrane transporter (EMT), which has been hypothesized to facilitate the cellular uptake and subsequent degradation of eCBs. We found that the major eCB synthesizing (NAPE-PLD, DAGLα and -β) and degrading (FAAH, MAGL) enzymes are expressed in SZ95 sebocytes, and also in SGs (except for DAGLα, whose staining was dubious in histological preparations). Interestingly, eCB uptake-inhibition with VDM11 induced a moderate increase in SLP, and also elevated the levels of various eCBs and related acylethanolamides. Finally, we found that VDM11 was able to interfere with the pro-inflammatory action of the Toll-like receptor 4 activator lipopolysaccharide. Collectively, our data suggest that inhibition of eCB uptake exerts anti-inflammatory actions and elevates both SLP and eCB levels; thus, these inhibitors might be beneficial in cutaneous inflammatory conditions accompanied by dry skin.”

https://www.ncbi.nlm.nih.gov/pubmed/29501385

http://www.jidonline.org/article/S0022-202X(18)30147-7/pdf

Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s disease and Less Well-Known Diseases.

“The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 being cloned in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics could only be justified by the existence of endogenous ligands that are capable of binding to them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA), two years later and the subsequent identification of a family of lipid transmitters known as the fatty acid ester 2-arachidonoylglycerol (2-AG). The endogenous cannabinoid system is a complex signalling system that comprises transmembrane endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation. The endocannabinoid system has been implicated in a wide diversity of biological processes, in both the central and peripheral nervous systems, including memory, learning, neuronal development, stress and emotions, food intake, energy regulation, peripheral metabolism, and the regulation of hormonal balance through the endocrine system. In this context, this article will review the current knowledge of the therapeutic potential of cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome. The therapeutic applications will be addressed through the study of cannabinoid agonists acting as single drugs and multi-target drugs highlighting the CB2 receptor agonist.”

https://www.ncbi.nlm.nih.gov/pubmed/29484980

http://www.eurekaselect.com/160083/article

Limited Access to a High Fat Diet Alters Endocannabinoid Tone in Female Rats.

Image result for frontiers in neuroscience

“Emerging evidence suggest an impaired endocannabinoid activity in the pathophysiology of binge eating disorder (BED). Herein, we investigated whether endocannabinoid tone could be modified as a consequence of dietary-induced binge eating in female rats.

For this purpose, brain levels of the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), as well as two endocannabinoid-like lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), were assessed in different brain areas involved in the hedonic feeding (i.e., prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and hypothalamus).

The brain density of cannabinoid type-1 receptors (CB1) was also evaluated. Furthermore, we determined plasma levels of leptin, ghrelin, and corticosterone hormones, which are well-known to control the levels of endocannabioids and/or CB1 receptors in the brain.

To induce binge eating behavior, rats were subject to an intermittent and limited access to a high fat diet (HFD) (margarine). Three experimental groups were used, all with ad libitum access to chow: control (CTRL), with no access to margarine; low restriction (LR), with 2 h margarine access 7 days/week; high restriction (HR), with 2 h margarine access 3 days/week. Bingeing was established when margarine intake in the HR group exceeded that of the LR group.

Our results show that, compared to CTRL, AEA significantly decreased in the caudate putamen, amygdala, and hippocampus of HR group. In contrast, 2-AG significantly increased in the hippocampus while OEA decreased in the hypothalamus. Similar to the HR group, AEA and OEA decreased respectively in the amygdala and hypothalamus and 2-AG increased in the hippocampus of LR group. Moreover, LR group also had AEA decreased in the prefrontal cortex and increased in the nucleus accumbens. In both groups we found the same reduction of CB1 receptor density in the prefrontal cortex compared to CTRL. Also, LR and HR groups showed alterations in both ghrelin and corticosterone levels, while leptin remained unaltered.

In conclusion, our findings show a modified endocannabinoid tone due to margarine exposure, in several brain areas that are known to influence the hedonic aspect of food. Even if not uniquely specific to binge eating, margarine-induced changes in endocannabinoid tone could contributes to the development and maintenance of this behavior.”

https://www.ncbi.nlm.nih.gov/pubmed/29456490

https://www.frontiersin.org/articles/10.3389/fnins.2018.00040/full

Plasma N-acylethanolamine and endocannabinoid levels in burning mouth syndrome: potential role in disease pathogenesis.

Journal of Oral Pathology & Medicine

“The objective was to measure endocannabinoid (eCB) ligands and non-cannabinoid N-acylethanolamine (NAE) molecules in plasma from individuals with burning mouth syndrome (BMS), and to determine if plasma eCB/NAE levels correlated with pain, inflammation and depressive symptomatology in this cohort.

RESULTS:

Plasma levels of PEA, but not OEA, AEA or 2-AG, were significantly elevated in patients with BMS, when compared to plasma from healthy individuals. Plasma PEA, OEA and AEA levels correlated with depressive symptomatology.

CONCLUSIONS:

This is the first evidence to indicate that circulating eCB/NAE levels are altered in BMS.”

https://www.ncbi.nlm.nih.gov/pubmed/29436743

http://onlinelibrary.wiley.com/doi/10.1111/jop.12692/abstract

Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges.

Image result for frontiers in immunology

“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (-)-trans9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.].

These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes.

The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc.

Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption.

Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.”   https://www.ncbi.nlm.nih.gov/pubmed/29176975

“Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases.”   https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full

Characterization of endocannabinoids and related acylethanolamides in the synovial fluid of dogs with osteoarthritis: a pilot study.

 Image result for bmc veterinary research

“Cannabis-based drugs have been shown to be effective in inflammatory diseases.

A number of endocannabinoids including N- arachidonoylethanolamide (anandamide, AEA) and 2-arachidonyl glycerol (2-AG) with activity at the cannabinoidreceptors (CBR) CBR1 and CBR2, have been identified. Other structurally related endogenous fatty acid compounds such as oleoylethanolamide (OEA) and palmitoyl ethanolamide (PEA) have been identified in biological tissues.

These compounds do not bind to CBR but might be involved in facilitating the actions of directly acting endocannabinoids and thus are commonly termed “entourage” compounds due to their ability to modulate the endocannabinoid system.

The aim of this study was to evaluate the presence of endocannabinoids and entourage compounds in the synovial fluid of dogs with osteoarthritis subjected to arthrotomy of the knee joint. Cytokines and cytology were studied as well.

AEA, 2-AG, OEA and PEA were all present in the synovial fluid of arthritic knees and in the contralateral joints; in addition, a significant increase of OEA and 2AG levels were noted in SF from OA knees when compared to the contralateral joints.

The identification and quantification of endocannabinoids and entourage compounds levels in synovial fluids from dogs with OA of the knee is reported for the first time. Our data are instrumental for future studies involving a greater number of dogs. Cannabinoids represent an emerging and innovative pharmacological tool for the treatment of OA and further studies are warranted to evaluate the effectiveness of cannabinoids in veterinary medicine.”

https://www.ncbi.nlm.nih.gov/pubmed/29110674

“The ECS can be exploited as a potential therapeutic option for OA. We have demonstrated the presence of AEA, 2-AG, OEA and PEA in the SF of dogs with OA. Our data open the avenue to future studies involving a higher number of dogs and aimed at defining the role played by these compounds in OA of the dogs. Both plant-derived and synthetic agonists of CBRs represent an emerging and innovative pharmacological tool for the treatment of OA. ” https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-017-1245-7

[Cannabinoid receptor system regulates ion channels and synaptic transmission in retinal cells].

Image result for Sheng Li Xue Bao. journal

“Endocannabinoid receptor system is extensively expressed in the vertebrate retina. There are two types of cannabinoid receptors, CB1 and CB2. Activation of these two receptors by endocannabinoids N-arachidonoylethanolamide (anandamine, AEA) and 2-arachidonyl glycerol (2-AG) regulates multiple neuronal and glial ion channels, thus getting involved in retinal visual information processing. In this review, incorporating our results, we discuss the modulation of cannabinoid CB1 and CB2 receptors on retinal neuronal and glial ion channels and retinal synaptic transmission.”

https://www.ncbi.nlm.nih.gov/pubmed/29063116

Human bone marrow mesenchymal stem cells secrete endocannabinoids that stimulate in vitro hematopoietic stem cell migration effectively comparable to beta adrenergic stimulation.

Experimental Hematology Home

“Granulocyte Colony-Stimulating Factor (G-CSF) is a well-known hematopoietic stem cell (HSC) mobilizing agent used in both allogeneic and autologous transplantation. However, a proportion of patients or healthy donors fail to mobilize sufficient number of cells. New mobilization agents are therefore needed.

Endocannabinoids (eCBs) are endogenous lipid mediators generated in the brain and peripheral tissues and activate the cannabinoid receptors (CB1, CB2). We suggest that eCBs may act as mobilizers of hematopoietic stem cells (HSC) from the BM under stress conditions as beta adrenergic receptors (Adrβ).

This study demonstrates that bone marrow (BM) mesenchymal stem cells (MSCs) secrete anandamide (AEA) and 2-arachidonylglycerol (2-AG), and peripheral blood (PB) and BM microenvironment contain AEA and 2-AG. 2-AG levels are significantly higher in PB of the G-CSF treated group when compared to BM plasma. BM mononuclear cells (MNCs) and CD34+HSCs, express CB1, CB2 and Adrβ subtypes. CD34+HSCs had higher CB1 and CB2 receptor expression in G-CSF untreated and treated groups when compared to MSCs. MNCs but not MSCs expressed CB1 and CB2 receptors based on qRT-PCR and flow cytometry (FC). AEA and 2-AG stimulated HSC migration was blocked by eCB receptor antagonists in in vitro migration assay.

In conclusion, components of the eCB system and their interaction with Adrβ subtypes were demonstrated on HSCs and MSCs of G-CSF treated and untreated healthy donors in vitro, revealing that eCBs might be potential candidates to enhance or facilitate G-CSF-mediated HSC migration under stress conditions in a clinical setting.”

https://www.ncbi.nlm.nih.gov/pubmed/29030083

http://www.exphem.org/article/S0301-472X(17)30813-5/fulltext

Cannabinoid CB1 Discrimination: Effects of Endocannabinoids and Catabolic Enzyme Inhibitors.

Journal of Pharmacology and Experimental Therapeutics

“An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type-1 (CB1) receptor agonists such as Δ9-tetrahydrocannabinol are increasingly utilized for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB1 agonist-like subjective effects, as reflected in the presence or absence of CB1-related discriminative-stimulus effects in laboratory subjects. Squirrel monkeys (n=8) that discriminated the CB1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB1 agonist-like effects when administered alone or after enzyme inhibition. Results indicate that CB1-related discriminative-stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were non-surmountably antagonized by low doses of rimonabant. Additionally, FAAH- or MGL-inhibition revealed CB1-like subjective effects produced by AEA, but not 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB1 receptor-mediated subjective effects.”

https://www.ncbi.nlm.nih.gov/pubmed/28947487

http://jpet.aspetjournals.org/content/early/2017/09/25/jpet.117.244392