Endocannabinoid system acts as a regulator of immune homeostasis in the gut

PNAS, Proceedings of the National Academy of Sciences

“Exogenous cannabinoids such as marijuana exert their influence through cannabinoid receptors. Endogenous cannabinoids such as anandamide (AEA) function through the same receptors, and their physiological roles are a subject of intense study. Here, we show that AEA plays a pivotal role in maintaining immunological health in the gut. The immune system in the gut actively tolerates the foreign antigens present in the gut through mechanisms that are only partially understood. We show that AEA contributes to this critical process by promoting the presence of CX3CR1hi macrophages, which are immunosuppressive. These results uncover a major conversation between the immune and nervous systems. In addition, with the increasing prevalence of ingestion of exogenous marijuana, our study has significant implications for public health.”  http://www.pnas.org/content/early/2017/04/18/1612177114.full

“Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.”  https://www.ncbi.nlm.nih.gov/pubmed/28439004

“Active ingredients in both hot peppers and cannabis calm the gut’s immune system” https://medicalxpress.com/news/2017-04-ingredients-hot-peppers-cannabis-calm.html

 

Antihyperalgesic Activities of Endocannabinoids in a Mouse Model of Antiretroviral-Induced Neuropathic Pain.

Image result for Front Pharmacol.

“Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs.

Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy.

The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy.

Conclusion: These data show that ddC induces thermal hyperalgesia, which is associated with dysregulation of the mRNA expression of some endocannabinoid system molecules. The endocannabinoids AEA and 2-AG have antihyperalgesic activity, which is dependent on cannabinoid receptor and GPR55 activation. Thus, agonists of cannabinoid receptors and GPR55 could be useful therapeutic agents for the management of NRTI-induced painful sensory neuropathy.”

https://www.ncbi.nlm.nih.gov/pubmed/28373843

Anticancer effects of anandamide on head and neck squamous cell carcinoma cells via the production of receptor-independent reactive oxygen species.

Head & Neck

“The endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are considered promising potential anticancer agents. In this study, we examined the anticancer effects of AEA and 2-AG in head and neck squamous cell carcinoma (HNSCC) cell lines. Our results showed that AEA effectively inhibited proliferation of HNSCC cells whereas 2-AG did not. The anticancer effect of AEA seemed to be mediated by a receptor-independent mechanism. Inhibitors of AEA intracellular transportation and transfection of HNSCC cells with fatty acid amide hydrolase, a key enzyme in AEA metabolism, reversed AEA-dependent inhibition of cell proliferation. We found that cyclooxygenase-2 (COX-2) did not mediate the anticancer effects of AEA; instead we observed an increase in reactive oxygen species (ROS) production after AEA treatment. Moreover, antioxidants partially reversed AEA-dependent inhibition of cell proliferation. These findings suggest that AEA might have anticancer effects on HNSCC cells by mediating an increase in ROS levels through a receptor-independent mechanism.” https://www.ncbi.nlm.nih.gov/pubmed/24797795

http://onlinelibrary.wiley.com/doi/10.1002/hed.23727/abstract

FAAH inhibition produces antidepressant-like efforts of mice to acute stress via synaptic long-term depression.

Image result for Behav Brain Res.

“Recent studies have shown that inhibition of fatty acid amide hydrolase (FAAH), the major degradative enzyme of the endocannabinoid N-arachidonoylethanolamine (AEA), produced antidepressant behavioral responses, but its underlying mechanism is not clear. Here we find that a systemic administration of the FAAH inhibitor PF3845 or an intra-CA1 application of AEA elicits an in vivo long-term depression (LTD) at excitatory glutamatergic CA3-CA1 synapses of the hippocampus. The PF3845- and/or AEA-elicited LTD are abolished by the LTD-blocking peptide Tat-GluR2. PF3845 significantly decreases passive behavioral coping of naïve mice to acute inescapable stress, which is also abolished by Tat-GluR2 peptide. However, PF3845 does not significantly affect sucrose assumption ratio of mice receiving chronic administration of corticosterone. These results suggest that FAAH inhibitors are able to produce antidepressant effects in naïve animals in response to acute stress through LTD at hippocampal glutamatergic CA3-CA1 synapses.”

https://www.ncbi.nlm.nih.gov/pubmed/28193523

Fatty acid amide hydrolase inhibitors produce rapid anti-anxiety responses through amygdala long-term depression in male rodents.

Image result for Journal of Psychiatry & Neuroscience

“Pathological anxiety is the most common type of psychiatric disorder. The current first-line anti-anxiety treatment, selective serotonin/noradrenalin reuptake inhibitors, produces a delayed onset of action with modest therapeutic and substantial adverse effects, and long-term use of the fast-acting anti-anxiety benzodiazepines causes severe adverse effects.

Inhibition of the fatty acid amide hydrolase (FAAH), the endocannabinoid N-arachidonoylethanolamine (AEA) degradative enzyme, produces anti-anxiety effects without substantial “unwanted effects” of cannabinoids, but its anti-anxiety mechanism is unclear.

CONCLUSION:

We propose that the rapid anti-anxiety effects of FAAH inhibition are due to AEA activation of astroglial CB1R and subsequent basolateral amygdala LTD in vivo.”

https://www.ncbi.nlm.nih.gov/pubmed/28234213

Gut-brain axis: Role of lipids in the regulation of inflammation, pain and CNS diseases.

Image result for Curr Med Chem

“The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis.

This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitary-adrenal (HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disorders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alzheimer Disease etc.

Based on this background, and considering the relevance of alteration of the symbiotic state between host and microbiota, this review focuses on the role and the involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoilethanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a large group of bioactive lipids able to modulate peripheral and central pathologic processes.

It is well established their effective role in inflammation, acute and chronic pain, obesity and central nervous system diseases. It has been shown a possible correlation between these lipids and gut microbiota through different mechanisms.

Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing inflammation and pain in irritable bowel syndrome and IBD animal models.

In this review, we underline the relationship among inflammation, pain, microbiota and the different lipids, focusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in central nervous system diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/28215162

Cannabinoids activate monoaminergic signaling to modulate key C. elegans behaviors.

Image result for J Neurosci

“Cannabis or marijuana, a popular recreational drug, alters sensory perception and exerts a range of potential medicinal benefits.

The present study demonstrates that the endogenous cannabinoid receptor agonists, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) activate a canonical cannabinoid receptor in C. elegans and also modulate monoaminergic signaling at multiple levels.

2-AG or AEA inhibit nociception and feeding through a pathway requiring the cannabinoid-like receptor, NPR-19. 2-AG or AEA activate NPR-19 directly and cannabinoid-dependent inhibition can be rescued in npr-19 null animals by the expression of a human cannabinoid receptor, CB1, highlighting the orthology of the receptors.

Cannabinoids also modulate nociception and locomotion through an NPR-19-independent pathway requiring an α2A-adrenergic-like octopamine receptor, OCTR-1, and a 5-HT1A-like receptor, SER-4, that involves a complex interaction among cannabinoid, octopaminergic and serotonergic signaling. 2-AG activates OCTR-1 directly. In contrast, 2-AG does not activate SER-4 directly, but appears to enhance SER-4-dependent serotonergic signaling by increasing endogenous 5-HT.

This study defines a conserved cannabinoid signaling system in C. elegans, demonstrates the cannabinoid-dependent activation of monoaminergic signaling and highlights the advantages of studying cannabinoid signaling in a genetically-tractable whole animal model.

SIGNIFICANCE STATEMENTCannabis sativa causes euphoria and exerts a wide range of medicinal benefits. For years, cannabinoids have been studied at the cellular level using tissue explants with conflicting results. To better understand cannabinoid signaling, we have used the C. elegans model to examine the effects of cannabinoids on behavior. The present study demonstrates that mammalian cannabinoid receptor ligands activate a conserved cannabinoid signaling system in C. elegans and also modulate monoaminergic signaling, potentially impacting an array of disorders, including anxiety and depression. This study highlights the potential role of cannabinoids in modulating monoaminergic signaling, and the advantages of studying cannabinoid signaling in a genetically-tractable, whole-animal model.”

https://www.ncbi.nlm.nih.gov/pubmed/28188220

Targeting Cutaneous Cannabinoid Signaling in Inflammation – A “High”-way to Heal?

Image result for EBioMedicine

“The endocannabinoid system (ECS) is a recently emerging complex regulator of multiple physiological processes. It comprises several endogenous ligands (e.g. N-arachidonoylethanolamine, a.k.a. anandamide [AEA], 2-arachidonoylglycerol [2-AG], palmitoylethanolamide [PEA], etc.), a number of endocannabinoid (eCB)-responsive receptors (e.g. CB1 and CB2, etc.), as well as enzymes and transporters involved in the synthesis and degradation of the eCBs.

Among many other tissues and organs, various members of the ECS were shown to be expressed in the skin as well. Indeed, AEA, 2-AG, CB1 and CB2 together with the major eCB-metabolizing enzymes (e.g. fatty acid amide hydrolase [FAAH], which cleaves AEA to ethanolamine and pro-inflammatory arachidonic acid) were found in various cutaneous cell types. Importantly, the eCB-tone and cannabinoid signaling in general appear to play a key role in regulating several fundamental aspects of cutaneous homeostasis, including proliferation and differentiation of epidermal keratinocytes, hair growth, sebaceous lipid production, melanogenesis, fibroblast activity, etc.

Moreover, appropriate eCB-signaling through CB1 and CB2 receptors was found to be crucially important in keeping cutaneous inflammatory processes under control.

Collectively, these findings (together with many other recently published data) implied keratinocytes to be “non-classical” immune competent cells, playing a central role in initiation and regulation of cutaneous immune processes, and the “c(ut)annabinoid” system is now proven to be one of their master regulators.

Another recently emerging, fascinating possibility to manage cutaneous inflammation through the cannabinoid signaling is the administration of phytocannabinoids (pCB). Cannabis sativa contains over 100 different pCBs, the vast majority of which have no psychotropic activity, and usually possess a “favorable” side-effect profile, which makes these substances particularly interesting drug candidates in treating several inflammation-accompanied diseases.

With respect to the skin, we have recently shown that one of the best studied pCBs, (−)-cannabidiol (CBD), may have great potential in managing acne, an inflammation-accompanied, extremely prevalent cutaneous disease.

Collectively, in light of the above results, both increase/restoration of the homeostatic cutaneous eCB-tone by FAAH-inhibitors and topical administration of non-psychotropic pCBs hold out the promise to exert remarkable anti-inflammatory actions, making them very exciting drug candidates, deserving full clinical exploration as potent, yet safe novel class of anti-inflammatory agents.”

http://www.ebiomedicine.com/article/S2352-3964(17)30003-8/fulltext

The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice.

Image result for Neuropharmacology.

“Although opioids are highly efficacious analgesics, their abuse potential and other untoward side effects diminish their therapeutic utility. The addition of non-opioid analgesics offers a promising strategy to reduce required antinociceptive opioid doses that concomitantly reduce opioid-related side effects.

Inhibitors of the primary endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) show opioid-sparing effects in preclinical models of pain. As simultaneous inhibition of these enzymes elicits enhanced antinociceptive effects compared with single enzyme inhibition, the present study tested whether the dual FAAH-MAGL inhibitor SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] produces morphine-sparing antinociceptive effects, without major side effects associated with either drug class.

Although high doses of SA-57 alone were required to produce antinociception, low doses of this compound, which elevated AEA and did not affect 2-AG brain levels, augmented the antinociceptive effects of morphine, but lacked cannabimimetic side effects.

Because of the high abuse liability of opioids and implication of the endocannabinoid system in the reinforcing effects of opioids, the final experiment tested whether SA-57 would alter heroin seeking behavior. Strikingly, SA-57 reduced heroin-reinforced nose poke behavior and the progressive ratio break point for heroin.

In conclusion, the results of the present study suggest that inhibition of endocannabinoid degradative enzymes represents a promising therapeutic approach to decrease effective doses of opioids needed for clinical pain control, and may also possess therapeutic potential to reduce opioid abuse.”

https://www.ncbi.nlm.nih.gov/pubmed/27890602

Endocannabinoid system in sexual motivational processes: is it a novel therapeutic horizon?

Image result for pharmacological research logo

“The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana’s psychoactive ingredient Δ9-tetrahydrocannabinol (Δ9-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors.

For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ9-THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment.

In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential.”

https://www.ncbi.nlm.nih.gov/pubmed/27884725

“Cannabis As An Aphrodisiac? The Evidence Is Mounting”  https://www.civilized.life/articles/aphrodisiac-evidence-is-mounting/