Targeting Cannabinoid Signaling in the Immune System: “High”-ly Exciting Questions, Possibilities, and Challenges

Image result for frontiers in immunology“It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the “phytocannabinoids” [pCBs; e.g., (−)-trans9-tetrahydrocannabinol (THC), (−)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances [“endocannabinoids” (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and “recreational” marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.

Active Components of Cannabis sativa (Hemp)—Phytocannabinoids (pCBs) and Beyond

It is known since ancient times that consumption of different parts of the plant Cannabis sativa can lead to psychotropic effects. Moreover, mostly, but not exclusively because of its potent analgesic actions, it was considered to be beneficial in the management of several diseases. Nowadays it is a common knowledge that these effects were mediated by the complex mixture of biologically active substances produced by the plant. So far, at least 545 active compounds have been identified in it, among which, the best-studied ones are the so-called pCBs. It is also noteworthy that besides these compounds, ca. 140 different terpenes [including the potent and selective CB2 agonist sesquiterpene β-caryophyllene (BCP)], multiple flavonoids, alkanes, sugars, non-cannabinoid phenols, phenylpropanoids, steroids, fatty acids, and various nitrogenous compounds can be found in the plant, individual biological actions of which are mostly still nebulous. Among the so far identified > 100 pCBs, the psychotropic (−)-trans9-tetrahydrocannabinol (THC) and the non-psychotropic (−)-cannabidiol (CBD) are the best-studied ones, exerting a wide-variety of biological actions [including but not exclusively: anticonvulsive, analgesic, antiemetic, and anti inflammatory effects]. Of great importance, pCBs have been shown to modulate the activity of a plethora of cellular targets, extending their impact far beyond the “classical” (see above) cannabinoid signaling. Indeed, besides being agonists [or in some cases even antagonists of CB1 and CB2 cannabinoid receptors, some pCBs were shown to differentially modulate the activity of certain TRP channels, PPARs, serotonin, α adrenergic, adenosine or opioid receptors, and to inhibit COX and lipoxygenase enzymes, FAAH, EMT, etc.. Moreover, from a clinical point-of-view, it should also be noted that pCBs can indirectly modify pharmacokinetics of multiple drugs (e.g., cyclosporine A) by interacting with several cytochrome P 450 (CYP) enzymes. Taken together, pCBs can be considered as multitarget polypharmacons, each of them having unique “molecular fingerprints” created by the characteristic activation/inhibition pattern of its locally available cellular targets.

Concluding Remarks—Lessons to Learn from Cannabis

Research efforts of the past few decades have unambiguously evidenced that ECS is one of the central orchestrators of both innate and adaptive immune systems, and that pure pCBs as well as complex cannabis-derivatives can also deeply influence immune responses. Although, many open questions await to be answered, pharmacological modulation of the (endo)cannabinoid signaling, and restoration of the homeostatic eCB tone of the tissues augur to be very promising future directions in the management of several pathological inflammation-accompanied diseases. Moreover, in depth analysis of the (quite complex) mechanism-of-action of the most promising pCBs is likely to shed light to previously unknown immune regulatory mechanisms and can therefore pave new “high”-ways toward developing completely novel classes of therapeutic agents to manage a wide-variety of diseases.”

https://www.frontiersin.org/articles/10.3389/fimmu.2017.01487/full

www.frontiersin.org

Investigating the safety and efficacy of nabilone for the treatment of agitation in patients with moderate-to-severe Alzheimer’s disease: Study protocol for a cross-over randomized controlled trial.

Contemporary Clinical Trials Communications“Agitation is a prevalent and difficult-to-treat symptom in patients with moderate-to-severe Alzheimer’s disease (AD). Though there are nonpharmacological and pharmacological interventions recommended for the treatment of agitation, the efficacy of these are modest and not always consistent. Furthermore, the safety profiles of currently prescribed medications are questionable.

Nabilone, a synthetic cannabinoid, has a distinct pharmacological profile that may provide a safer and more effective treatment for agitation, while potentially having benefits for weight and pain. Additionally, emerging evidence suggests nabilone may have neuroprotective effects.

We describe a clinical trial investigating the safety and efficacy of nabilone for the treatment of agitation in patients with moderate-to-severe AD.

A safe and efficacious pharmacological intervention for agitation, with effects on pain and weight loss in patients with moderate-to-severe AD could increase quality-of-life, reduce caregiver stress and avoid unnecessary institutionalization and related increases in health care costs.”

https://www.ncbi.nlm.nih.gov/pubmed/31338476

https://www.sciencedirect.com/science/article/pii/S2451865418301789?via%3Dihub

Nabilone is a man-made drug similar to the natural substances found in marijuana (cannabis).” https://www.webmd.com/drugs/2/drug-144706/nabilone-oral/details

Pharmacology of Medical Cannabis.

 “The Cannabis plant has been used for many of years as a medicinal agent in the relief of pain and seizures. It contains approximately 540 natural compounds including more than 100 that have been identified as phytocannabinoids due to their shared chemical structure. The predominant psychotropic component is Δ9-tetrahydrocannabinol (Δ9-THC), while the major non-psychoactive ingredient is cannabidiol (CBD). These compounds have been shown to be partial agonists or antagonists at the prototypical cannabinoid receptors, CB1 and CB2. The therapeutic actions of Δ9-THC and CBD include an ability to act as analgesics, anti-emetics, anti-inflammatory agents, anti-seizure compounds and as protective agents in neurodegeneration. However, there is a lack of well-controlled, double blind, randomized clinical trials to provide clarity on the efficacy of either Δ9-THC or CBD as therapeutics. Moreover, the safety concerns regarding the unwanted side effects of Δ9-THC as a psychoactive agent preclude its widespread use in the clinic. The legalization of cannabis for medicinal purposes and for recreational use in some regions will allow for much needed research on the pharmacokinetics and pharmocology of medical cannabis. This brief review focuses on the use of cannabis as a medicinal agent in the treatment of pain, epilepsy and neurodegenerative diseases. Despite the paucity of information, attention is paid to the mechanisms by which medical cannabis may act to relieve pain and seizures.”

https://www.ncbi.nlm.nih.gov/pubmed/31332738

https://link.springer.com/chapter/10.1007%2F978-3-030-21737-2_8

Cannabinoid system involves in the analgesic effect of protocatechuic acid.

 “Protocatechuic acid is an antioxidant which is shown to have analgesic activity in limited studies. However, the mechanisms of action remain unclear.

OBJECTIVES:

It is aimed to investigate the possible contribution of cannabinoid system that supresses the nociceptive process by the activation of CB1 and CB2 receptors in central and peripheral levels of pain pathways, to the analgesic activity of protocatechuic acid.

RESULTS:

It was determined that protocatechuic acid has dose-dependent analgesic effect independently from locomotor activity and is comparable with effects of dipyrone and WIN 55,212-2. Pre-treatment with CB1 receptor antagonist AM251 significantly antagonized the protocatechuic acid-induced analgesia in the tail-immersion and writhing tests, whereas pre-treatment of CB2 receptor antagonist AM630 was found to be effective only in the tail-immersion test.

CONCLUSION:

It is concluded that cannabinoid modulation contributes to the analgesic effect of protocatechuic acid in spinal level rather than peripheral. CB1 receptor stimulation rather than CB2 receptor stimulation mediates the analgesic effect of protocatechuic acid in both levels, especially peripheral. Graphical abstract Protocatechuic acid inhibits pain response via cannabinoidergic system.”

https://www.ncbi.nlm.nih.gov/pubmed/31325037

https://link.springer.com/article/10.1007/s40199-019-00288-x

“Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea.”  https://en.wikipedia.org/wiki/Protocatechuic_acid

Nabiximols for the Treatment of Cannabis Dependence: A Randomized Clinical Trial.

Image result for jama network

“This study demonstrates that cannabinoid agonist treatment, in this case using nabiximols, in combination with psychosocial interventions is a safe approach for reducing cannabis use among individuals with cannabis dependence who are seeking treatment.”   https://www.ncbi.nlm.nih.gov/pubmed/31305874
https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2737918
“nabiximols: An herbal preparation containing a defined quantity of specific cannabinoids formulated for oromucosal spray administration with potential analgesic activity. Nabiximols contains a standardized extract of tetrahydrocannabinol (THC), the non-psychoactive cannabinoid cannabidiol (CBD), other minor cannabinoids, flavonoids, and terpenes from two cannabis plant varieties.” https://www.cancer.gov/publications/dictionaries/cancer-drug/def/nabiximols
“Cannabis treatment counters addiction: First study of its kind. Trial shows cannabis replacement therapy can be effective” https://www.sciencedaily.com/releases/2019/07/190715114247.htm

Cannabinoid receptors in osteoporosis and osteoporotic pain: a narrative update of review.

Journal of Pharmacy and Pharmacology banner“Osteoporosis is a skeletal disease with decreased bone mass and alteration in microarchitecture of bone tissue, and these changes put patients in risk of bone fracture. As a common symptom of osteoporosis and complication of osteoporotic fracture, chronic pain is a headache for clinicians. Nonsteroidal anti-inflammatory drugs (NSAIDs), selective COX-2 inhibitors and opioid drugs can temporarily reduce osteoporotic pain but have relevant side effects, such as addiction, tolerability and safety. The review summarized the recent advancements in the study of CB receptors in osteoporosis and osteoporotic pain and related mechanisms.

KEY FINDINGS:

Recent studies indicated the two nociceptive receptors, cannabinoid receptor (CB) and transient receptor potential vanilloid type 1 (TRPV1) channel, are co-expressed in bone cells and play important role in the metabolism of bone cells, suggesting that dualtargeting these 2 receptors/channel may provide a novel approach for osteoporotic pain. In addition, both CB receptor and TRPV1 channel are found to be expressed in the glial cells which play vital role in mediating inflammation, chronic pain and metabolism of bone cells, suggesting a role of glial cells inosteoporotic pain.

SUMMARY:

Multiple-targeting against glial cells, CB receptors and TRPV1 channel may be one effective therapeutic strategy for osteoporotic pain in the future, following the elucidation of the complicated mechanism.”

https://www.ncbi.nlm.nih.gov/pubmed/31294469

https://onlinelibrary.wiley.com/doi/full/10.1111/jphp.13135

Use of Cannabis to Relieve Pain and Promote Sleep by Customers at an Adult Use Dispensary

Publication Cover

“Cannabis has been used for pain relief and to promote sleep for thousands of years. Over the past several decades in the United States (U.S.), a therapeutic role for cannabis in mainstream medicine has increasingly emerged. Medical cannabis patients consistently report using cannabis as a substitute for prescription medications. Both pain relief and sleep promotion are common reasons for cannabis use, and the majority of respondents who reported using cannabis for these reasons also reported decreasing or stopping their use of prescription or over-the-counter analgesics and sleep aids. While adult-use laws are frequently called “recreational,” implying that cannabis obtained through the adult use system is only for pleasure or experience-seeking, our findings suggest that many customers use cannabis for symptom relief.”

https://www.ncbi.nlm.nih.gov/pubmed/31264536

https://www.tandfonline.com/doi/full/10.1080/02791072.2019.1626953

“Cannabis Is An Effective Treatment Option For Pain Relief And Insomnia, Study Finds” https://www.inquisitr.com/5509672/cannabis-pain-medications-sleep/

“Marijuana Could Be The Alternative Pain Reliever Replacing Opioids”  https://www.medicaldaily.com/marijuana-alternative-pain-reliever-replacing-opioids-437974

Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors.

Image result for pain journal

“Central antinociceptive effects of cannabinoids have been well documented.

Our results indicate that cannabinoids produce antihyperalgesia via interaction with a peripheral CB1 receptor.

This hypothesis is supported by the finding that anandamide inhibited capsaicin-evoked release of calcitonin gene-related peptide from isolated hindpaw skin.

Collectively, these results indicate that cannabinoids reduce inflammation via interaction with a peripheral CB1 receptor.”

“The Endocannabinoid System and Pain. Cannabis has been used for more than twelve thousand years and for many different purposes (i.e. fiber, medicinal, recreational). However, the endocannabinoid signaling system has only recently been the focus of medical research and considered a potential therapeutic target. Cannabinoid receptors and their endogenous ligands are present at supraspinal, spinal and peripheral levels. Cannabinoids suppress behavioral responses to noxious stimulation and suppress nociceptive processing through activation of cannabinoid CB1 and CB2 receptor subtypes. These studies suggest that manipulation of peripheral endocannabinoids may be promising strategy for the management of pain.”
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834283/

“The Analgesic Potential of Cannabinoids. Historically and anecdotally cannabinoids have been used as analgesic agents. Moreover, cannabinoids act synergistically with opioids and act as opioid sparing agents, allowing lower doses and fewer side effects from chronic opioid therapy. Thus, rational use of cannabis based medications deserves serious consideration to alleviate the suffering of patients due to severe pain.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728280/

Cannabinoid receptor 1 (CB1R) expression in rat dental pulp

Oral Science International“Accumulating evidence supports the role of the cannabinoid system in providing an antinociceptive effect in various painful conditions.

This effect is mediated through the Cannabinoid receptor 1 (CB1R) expressed on nociceptive afferent nerve terminals.

To investigate whether this receptor plays a similar role in dental pain, we studied the presence and distribution of CB1R in rat dental pulp.

CB1R was present on nerve fibers in rat dental pulp and possibly plays a role in dental pain mechanisms.

Interestingly, CB1R has recently been demonstrated in human dental pulp.

This strongly suggests that CB1R could be a therapeutic target for dental pain management.”

https://www.sciencedirect.com/science/article/pii/S1348864312000031

Cannabinoid receptor CB1-immunoreactive nerve fibres in painful and non-painful human tooth pulp.

Journal of Clinical Neuroscience Home“The cannabinoid receptor CB1 is involved in modulation of neuronal hypersensitivity and pain. The aim of this study was to evaluate CB1 receptor levels for the first time in dental pain. A total of 19 patients due for molar extraction were divided into two groups, those with existing dental pain (n=9), and those with no history of pain (n=10). Immunohistochemistry and computer image analysis was used to evaluate CB1-positive nerve fibres in tooth pulp, with neurofilament-immunostaining as a structural nerve marker. CB1-immunoreactive nerve fibres were scattered throughout the tooth pulp and often seen in nerve bundles, but the fibres did not penetrate the subodontoblastic layer. There was no statistically significant change in the CB1 nerve fibre percentage area in the painful group compared to the non-painful group (p=0.146); the neurofilament fibres were significantly reduced in the painful group compared to the controls (p=0.028), but there was no difference in the ratio of CB1 to neurofilaments between the two groups. Thus, CB1 expression is maintained by nerve fibres in painful human dental pulp, and peripherally-restricted CB1 agonists currently in development may advance the treatment of dental pain.”

https://www.ncbi.nlm.nih.gov/pubmed/20705472

https://www.jocn-journal.com/article/S0967-5868(10)00289-4/fulltext