Potential therapeutic treatments of cancer-induced bone pain.

Current Opinion in Supportive and Palliative Care “The treatment of cancer-induced bone pain (CIBP) has been proven ineffective and relies heavily on opioids, the target of highly visible criticism for their negative side effects.

Alternative therapeutic agents are needed and the last few years have brought promising results, detailed in this review.

RECENT FINDINGS:

Cysteine/glutamate antiporter system, xc, cannabinoids, kappa opioids, and a ceramide axis have all been shown to have potential as novel therapeutic targets without the negative effects of opioids.

SUMMARY:

Review of the most recent and promising studies involving CIBP, specifically within murine models. Cancer pain has been reported by 30-50% of all cancer patients and even more in late stages, however the standard of care is not effective to treat CIBP. The complicated and chronic nature of this type of pain response renders over the counter analgesics and opioids largely ineffective as well as difficult to use due to unwanted side effects. Preclinical studies have been standardized and replicated while novel treatments have been explored utilizing various alternative receptor pathways: cysteine/glutamate antiporter system, xc, cannabinoid type 1 receptor, kappa opioids, and a ceramide axis sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1.”

https://www.ncbi.nlm.nih.gov/pubmed/32349095

 

Cannabis and cannabinoids in cancer pain management.

 Current Opinion in Supportive and Palliative Care | Apps | 148Apps“An increasing number of patients are turning to cannabis and cannabinoids for management of their palliative and nonpalliative cancer pain and other cancer-related symptoms.

Canadians have a legal framework for access to medical cannabis, which provides a unique perspective in a setting lacking robust clinical evidence. This review seeks to delineate the role of cannabis and cannabinoids in cancer pain management and offers insight into the Canadian practice.

RECENT FINDINGS:

A cohort study using nabiximols on advanced cancer pain in patients already optimized on opioids, over 3 weeks, demonstrated improved average pain score. A large observational study of cancer patients using cannabis over 6 months demonstrated a decreased number of patients with severe pain and decreased opioid use, whereas the number of patients reporting good quality of life increased.

SUMMARY:

Good preclinical animal data and a large body of observational evidence point to the potential efficacy of cannabinoids for cancer pain management. However, there are relatively weak data pointing to clinical efficacy from clinical trial data to date. In Canada, the burgeoning cannabis industry has driven the population to embrace a medicine before clinical evidence. There remains a need for high-quality randomized controlled trials to properly assess the effectiveness and safety of medical cannabis, compared with placebo and standard treatments for cancer-related symptoms.”

https://www.ncbi.nlm.nih.gov/pubmed/32332209

https://journals.lww.com/pages/results.aspx?txtKeywords=10.1097%2fSPC.0000000000000493

Can Hemp Help? Low-THC Cannabis and Non-THC Cannabinoids for the Treatment of Cancer.

cancers-logo“Cannabis has been used to relieve the symptoms of disease for thousands of years. However, social and political biases have limited effective interrogation of the potential benefits of cannabis and polarised public opinion.

Evidence is emerging for the therapeutic benefits of cannabis in the treatment of neurological and neurodegenerative diseases, with potential efficacy as an analgesic and antiemetic for the management of cancer-related pain and treatment-related nausea and vomiting, respectively.

An increasing number of preclinical studies have established that ∆9-THC can inhibit the growth and proliferation of cancerous cells through the modulation of cannabinoid receptors (CB1R and CB2R), but clinical confirmation remains lacking.

In parallel, the anti-cancer properties of non-THC cannabinoids, such as cannabidiol (CBD), are linked to the modulation of non-CB1R/CB2R G-protein-coupled receptors, neurotransmitter receptors, and ligand-regulated transcription factors, which together modulate oncogenic signalling and redox homeostasis.

Additional evidence has also demonstrated the anti-inflammatory properties of cannabinoids, and this may prove relevant in the context of peritumoural oedema and the tumour immune microenvironment. This review aims to document the emerging mechanisms of anti-cancer actions of non-THC cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32340151

https://www.mdpi.com/2072-6694/12/4/1033

Cannabidiol: A Brief Review of Its Therapeutic and Pharmacologic Efficacy in the Management of Joint Disease.

Cureus | LinkedIn“Cannabis use in the management of musculoskeletal diseases has gained advocacy since several states have legalized its recreational use.

Cannabidiol (CBD), a commercially available, non-neurotropic marijuana constituent, has shown promise in arthritic animal models by attenuating pro-inflammatory immune responses. Additional research has demonstrated the benefit of CBD in decreasing the endogenous pain response in mice subjected to acute arthritic conditions, and further studies have highlighted improved fracture healing following CBD use in murine mid-femoral fractures.

However, there is a lack of high-quality, novel research investigating the use of CBD in human musculoskeletal diseases aside from anecdotal accounts and retrospective reviews, perhaps due to legal ramifications limiting the enrollment of patients. The purpose of this review article is to highlight the extent of current research on CBD and its biochemical and pharmacologic efficacy in the treatment of joint disease, as well as the evidence for use of CBD and cannabis in patients undergoing joint arthroplasty.

Based on available literature relying on retrospective data and case reports, it is challenging to propose a recommendation for CBD use in perioperative pain management. Additionally, a number of CBD products currently available as supplements with different methods of administration, and it is important to remember that these products are non-pharmaceuticals. However, given the increased social relevance of CBD and cannabis-based medicines, future, prospective controlled studies evaluating their efficacy are needed.”

https://www.ncbi.nlm.nih.gov/pubmed/32328386

https://www.cureus.com/articles/28249-cannabidiol-a-brief-review-of-its-therapeutic-and-pharmacologic-efficacy-in-the-management-of-joint-disease

A Comprehensive Patient and Public Involvement Program Evaluating Perception of Cannabis-Derived Medicinal Products in the Treatment of Acute Postoperative Pain, Nausea, and Vomiting Using a Qualitative Thematic Framework.

View details for Cannabis and Cannabinoid Research cover image“Cannabis-derived medicinal products (CDMPs) have antiemetic properties and in combination with opioids have synergistic analgesic effects in part signaling through the delta and kappa opioid receptors.

The objective of this patient and public involvement program was to determine perception of perioperative CDMPs in our local population to inform design of a clinical trial.

Consensus was that potential benefits of CDMPs were attractive compared with the known risk profile of opioid use. Decrease in opioid dependence was agreed to be an appropriate clinical end-point for a randomized controlled clinical trial and there was concurrence of positive opinion of a therapeutic schedule of 5 days.

The perception of postoperative CDMP therapy was overwhelmingly positive in this West London population. The data from this thematic analysis will inform protocol development of clinical trials to determine analgesic and antiemetic efficacy of CDMPs.”

https://www.ncbi.nlm.nih.gov/pubmed/32322678

https://www.liebertpub.com/doi/10.1089/can.2019.0020

The Therapeutic Potential and Usage Patterns of Cannabinoids in People with Spinal Cord.

“People with spinal cord injuries (SCI) commonly experience pain and spasticity, but limitations of current treatments have generated interest in cannabis as a possible therapy.

We conducted this systematic review to: 1) examine usage patterns and reasons for cannabinoid use, and 2) determine the treatment efficacy and safety of cannabinoid use, in people with SCI.

Though 26 studies addressed cannabinoid usage, only 8 investigated its therapeutic potential on outcomes such as pain and spasticity.

The most common usage method was smoking. Relief of pain, spasticity and pleasure were the most common reasons for use. Statistically significant reduction of pain and spasticity was observed with cannabinoid use in 80% and 90% of experimental studies, respectively.

 

CONCLUSIONS:

Current evidence suggests cannabinoids may reduce pain and spasticity in people with SCI, but its effect magnitude and clinical significance is unclear. Existing information is lacking on optimal dosage, method of use, composition and concentration of compounds. Longterm, double-blind, RCTs, assessing a wider range of outcomes should be conducted to further understanding of the effects of cannabinoid use in people with SCI.”

https://www.ncbi.nlm.nih.gov/pubmed/32310048

http://www.eurekaselect.com/181078/article

“Cannabis cures the spine” https://www.jtcvs.org/article/S0022-5223(18)32080-4/fulltext

The anti-inflammatory and analgesic effects of formulated full-spectrum cannabis extract in the treatment of neuropathic pain associated with multiple sclerosis.

 SpringerLink“Cannabis has been used for thousands of years in many cultures for the treatment of several ailments including pain.

The benefits of cannabis are mediated largely by cannabinoids, the most prominent of which are tetrahydrocannabinol (THC) and cannabidiol (CBD). As such, THC and/or CBD have been investigated in clinical studies for the treatment of many conditions including neuropathic pain and acute or chronic inflammation.

While a plethora of studies have examined the biochemical effects of purified THC and/or CBD, only a few have focused on the effects of full-spectrum cannabis plant extract. Accordingly, studies using purified THC or CBD may not accurately reflect the potential health benefits of full-spectrum cannabis extracts.

Indeed, the cannabis plant produces a wide range of cannabinoids, terpenes, flavonoids, and other bioactive molecules which are likely to contribute to the different biological effects. The presence of all these bioactive molecules in cannabis extracts has garnered much attention of late especially with regard to their potential role in the treatment of neuropathic pain associated with multiple sclerosis.:

Herein, the current knowledge about the potential beneficial effects of existing products of full-spectrum cannabis extract in clinical studies involving patients with multiple sclerosis is extensively reviewed. In addition, the possible adverse effects associated with cannabis use is discussed along with how the method of extraction and the delivery mechanisms of different cannabis extracts contribute to the pharmacokinetic and biological effects of full-spectrum cannabis extracts.”

https://www.ncbi.nlm.nih.gov/pubmed/32239248

https://link.springer.com/article/10.1007%2Fs00011-020-01341-1

Editorial: The Canonical and Non-Canonical Endocannabinoid System as a Target in Cancer and Acute and Chronic Pain

frontiers in pharmacology – Retraction Watch“The endocannabinoid system (ECS) comprises the canonical receptor subtypes CB1R and CB2R and endocannabinoids (anandamide, AEA and 2-arachidonoylglycerol, 2-AG), and a “non-canonical” extended signaling network consisting of: (i) other fatty acid derivatives; (ii) the defined “ionotropic cannabinoid receptors” (TRP channels); other GPCRs (GPR55, PPARα); (iii) enzymes involved in the biosynthesis and degradation of endocannabinoids (FAAH and MAGL); and (iv) protein transporters (FABP family).The ECS is currently a hot topic due to its involvement in cancer and pain.

The current Research Topic highlights various ways the endocannabinoid system (ECS) can impact cancer and pain. Ramer et al. review the anticancer potential of the canonical and noncanonical endocannabinoid system. Morales and Jagerovic provide a much needed summary of cannabinoid ligands as promising antitumor agents in a wide variety of tumors, in contrast to their palliative applications. In their article, the authors classify cannabinoids with anticancer potential in endocannabinoids, phytocannabinoids, and synthetic cannabinoids. Moreno et al. in their review explored the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers, showing the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it.

As an ensemble, these studies provide further fuel to the discussion and underline the potential for targeting the ECS at multiple levels to treat certain cancers and for pain relief. Importantly, they also help to move the focal point of the discussion beyond THC, CBD, and the cannonical receptors. Several of these reports either review or provide data to support the use of/targeting of other members of the ECS system as well as alternative natural products beyond THC and CBD.”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00312/full

Cannabidiol in sport : ergogenic or else?

Pharmacological Research“In the sports domain, cannabis is prohibited by the World Anti-Doping Agency (WADA) across all sports in competition since 2004. The few studies on physical exercise and cannabis focused on the main compound i.e. Δ9-tetrahydrocannabinol. Cannabidiol (CBD) is another well-known phytocannabinoid present in dried or heated preparations of cannabis. Unlike Δ9-tetrahydrocannabinol, CBD is non-intoxicating but exhibits pharmacological properties that are interesting for medical use.

The worldwide regulatory status of CBD is complex and this compound is still a controlled substance in many countries. Interestingly, however, the World Anti-Doping Agency removed CBD from the list of prohibited substances – in or out of competition – since 2018. This recent decision by the WADA leaves the door open for CBD use by athletes.

In the present opinion article we wish to expose the different CBD properties discovered in preclinical studies that could be further tested in the sport domain to ascertain its utility. Preclinical studies suggest that CBD could be useful to athletes due to its anti-inflammatory, analgesic, anxiolytic, neuroprotective properties and its influence on the sleep-wake cycle. Unfortunately, almost no clinical data are available on CBD in the context of exercise, which makes its use in this context still premature.”

https://www.ncbi.nlm.nih.gov/pubmed/32205233

“Athletes could benefit from CBD to manage pain, inflammation and the swelling processes associated with injury. CBD could be useful to manage anxiety, fear memory process, sleep and sleepiness in athletes. CBD could be interesting for the management of mild traumatic brain injury and chronic traumatic encephalopathy.”

https://www.sciencedirect.com/science/article/abs/pii/S1043661819326143?via%3Dihub

The molecular mechanisms that underpin the biological benefit of full spectrum cannabis extract in the treatment of neuropathic pain and inflammation.

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease“Cannabis has been shown to be beneficial in the treatment of pain and inflammatory diseases.

The biological effect of cannabis is mainly attributed to two major cannabinoids, tetrahydrocannabinol and cannabidiol. In the majority of studies to-date, a purified tetrahydrocannabinol and cannabidiol alone or in combination have been extensively examined in many studies for the treatment of numerous disorders including pain and inflammation. However, few studies have investigated the biological benefits of full-spectrum cannabis plant extract.

Given that cannabis is known to generate a large number of cannabinoids along with numerous other biologically relevant products including terpenes, studies involving purified tetrahydrocannabinol and/or cannabidiol may not precisely consider the potential biological benefits of the full-spectrum cannabis extracts. This may be especially true in the role of cannabis as a treatment of pain and inflammation. Herein, we review the pre-clinical physiological and molecular mechanisms in biological systems that are affected by cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/32201189

“Full-spectrum cannabis extract demonstrates several convincing beneficial anti-inflammatory and analgesic effects in preclinical studies. Full-spectrum cannabis extract may represent a promising therapeutic agent that seems to benefit a variety of conditions associated with pain and inflammation.”

https://www.sciencedirect.com/science/article/abs/pii/S0925443920301162?via%3Dihub