Effects of cannabinoids on nitric oxide production by chondrocytes and proteoglycan degradation in cartilage.

“Cannabinoids have been reported to have anti-inflammatory effects and reduce joint damage in animal models of arthritis.

This suggests a potential therapeutic role in arthritis of this group of compounds.

Cannabinoids were studied to determine whether they have direct effects on chondrocyte metabolism resulting in cartilage protection.

Synthetic cannabinoids, R-(+)-Win-55,212 (Win-2) and S-(-)-Win-55,212 (Win-3) and the endocannabinoid, anandamide, were investigated on unstimulated or IL-1-stimulated nitric oxide (NO) production in bovine articular chondrocytes as well as on cartilage proteoglycan breakdown in bovine nasal cartilage explants.

Win-2 significantly inhibited (P < 0.05) NO production in chondrocytes at 1-10 microM concentrations. The combined CB(1) and CB(2) cannabinoid receptor antagonists, AM281 and AM630, respectively, at 100 microM did not block this effect, but instead they potentiated it. Anandamide and Win-2 (5-50 microM) also inhibited the release of sulphated glycosaminoglycans in bovine cartilage explants.

The results suggest that some cannabinoids may prevent cartilage resorption, in part, by inhibiting cytokine-induced NO production by chondrocytes and also by inhibiting proteoglycan degradation.”

http://www.ncbi.nlm.nih.gov/pubmed/15670582

Effect of anandamide in Plasmodium Berghei-infected mice.

“Eryptosis, the suicidal death of erythrocytes, is characterized by exposure of phosphatidylserine at the erythrocyte surface and cell shrinkage.

Triggers of eryptosis include anandamide.

Enhanced eryptosis of infected human erythrocytes is expected to delay the development of parasitaemia during infection with Plasmodium, the parasite causing malaria.

The present experiments aimed to test, whether anandamide influences eryptosis, parasite growth and/or host survival during in vitro or in vivo infection with Plasmodia.

In vivo administration of anandamide blunted the parasitaemia and significantly enhanced the survival of P. berghei-infected mice.

In conclusion, anandamide stimulated eryptosis of infected erythrocytes thus counteracting parasitaemia and a lethal course of the disease.”

http://www.ncbi.nlm.nih.gov/pubmed/20798520

A frequent polymorphism in the coding exon of the human cannabinoid receptor (CNR1) gene.

“The central cannabinoid receptor (CB1) mediates the pharmacological activities of cannabis, the endogenous agonist anandamide and several synthetic agonists.

The cloning of the human cannabinoid receptor (CNR1) gene facilitates molecular genetic studies in disorders like Gilles de la Tourette syndrome (GTS), obsessive compulsive disorder (OCD), Parkinsons disease, Alzheimers disease or other neuro psychiatric or neurological diseases, which may be predisposed or influenced by mutations or variants in the CNR1 gene.

We detected a frequent silent mutation (1359G–>A) in codon 453 (Thr) of the CNR1 gene that turned out to be a common polymorphism in the German population. Allele frequencies of this polymorphism are 0.76 and 0.24, respectively.

We developed a simple and rapid polymerase chain reaction (PCR)-based assay by artificial creation of a Msp I restriction site in amplified wild-type DNA (G-allele), which is destroyed by the silent mutation (A-allele).

The intragenic CNR1 polymorphism 1359(G/A) should be useful for association studies in neuro psychiatric disorders which may be related to anandamide metabolism disturbances.”

http://www.ncbi.nlm.nih.gov/pubmed/10441206

Endocannabinoid analogues exacerbate marble-burying behavior in mice via TRPV1 receptor.

“Activation of cannabinoid CB(1) receptor is shown to inhibit marble-burying behavior (MBB), a behavioral model for assessing obsessive-compulsive disorder (OCD).

Anandamide, an endogenous agonist at CB(1) receptor also activates the transient receptor potential vanilloid type 1 (TRPV1) channels but at a higher concentration.

Furthermore, anandamide-mediated TRPV1 effects are opposite to that of the CB(1) receptor. Therefore, the present study was carried out to investigate the influence of low and high doses of anandamide on MBB in CB(1) and TRPV1 antagonist pre-treated mice.

Thus, the study indicates the biphasic influence of anandamide on MBB, and chronic administration of capsazepine either alone or with URB597 might be an effective tool in the treatment of OCD.”

http://www.ncbi.nlm.nih.gov/pubmed/22248639

Deficient Adolescent Social Behavior Following Early-Life Inflammation is Ameliorated by Augmentation of Anandamide Signaling.

“Early-life inflammation has been shown to exert profound effects on brain development and behavior, including altered emotional behavior, stress responsivity and neurochemical/neuropeptide receptor expression and function.

The current study extends this research by examining the impact of inflammation, triggered with the bacterial compound lipopolysaccharide (LPS) on postnatal day (P) 14, on social behavior during adolescence.

We investigate the role that the endocannabinoid (eCB) system plays in sociability after early-life LPS.

These data suggest that alterations in eCB signaling following postnatal inflammation contribute to impairments in social behavior during adolescence and that inhibition of FAAH could be a novel target for disorders involving social deficits such as social anxiety disorders or autism.”

http://www.ncbi.nlm.nih.gov/pubmed/27453335

Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures.

“The purpose of this study was to investigate the role of the central cannabinoid receptor (CB(1)) in mediating the actions of the endogenous cannabinoid agonist anandamide and the synthetic cannabinoid CP-55940.

Activation of primary mouse astrocyte cultures by exposure to bacterial lipopolysaccharide (LPS) caused a marked (approximately tenfold) increase in nitric oxide (NO) release.

Coincubation with the cannabinoid agonists anandamide or CP-55940 markedly inhibited release of NO (-12% to -55%).

We also showed that endogenous or synthetic cannabinoids inhibit LPS-induced inducible NO synthase expression (mRNA and protein) in astrocyte cultures.

These results indicate that CB1 receptors may promote antiinflammatory responses in astrocytes.”

http://www.ncbi.nlm.nih.gov/pubmed/11891798

5-lipoxygenase mediates docosahexaenoyl ethanolamide and N-arachidonoyl-L-alanine-induced reactive oxygen species production and inhibition of proliferation of head and neck squamous cell carcinoma cells.

Image result for bmc cancer

“Endocannabinoids have recently drawn attention as promising anti-cancer agents. We previously observed that anandamide (AEA), one of the representative endocannabinoids, effectively inhibited the proliferation of head and neck squamous cell carcinoma (HNSCC) cell lines in a receptor-independent manner. In this study, using HNSCC cell lines, we examined the anti-cancer effects and the mechanisms of action of docosahexaenoyl ethanolamide (DHEA) and N-arachidonoyl-L-alanine (NALA), which are polyunsaturated fatty acid (PUFA)-based ethanolamides like AEA. From these findings, we suggest that ROS production induced by the 5-LO pathway mediates the anti-cancer effects of DHEA and NALA on HNSCC cells. Finally, our findings suggest the possibility of a new cancer-specific therapeutic strategy, which utilizes 5-LO activity rather than inhibiting it.”  http://www.ncbi.nlm.nih.gov/pubmed/27411387

https://bmccancer.biomedcentral.com/articles/10.1186/s12885-016-2499-3

Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging With the Novel Radiotracer [11C]CURB.

“One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH), and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence.

In cannabis users, FAAH binding was significantly lower by 14%-20% across the brain regions examined than in matched control subjects.

Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/27345297

The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain.

“There is considerable evidence to support the role of anandamide (AEA), an endogenous ligand of cannabinoid receptors, in neuropathic pain modulation. AEA also produces effects mediated by other biological targets, of which the transient receptor potential vanilloid type 1 (TRPV1) has been the most investigated. Both, inhibition of AEA breakdown by fatty acid amide hydrolase (FAAH) and blockage of TRPV1 have been shown to produce anti-nociceptive effects.

Recent research suggests the usefulness of dual-action compounds, which may afford greater anti-allodynic efficacy. Therefore, in the present study, we examined the effect of N-arachidonoyl-serotonin (AA-5-HT), a blocker of FAAH and TRPV1, in a rat model of neuropathic pain after intrathecal administration.

We found that treatment with AA-5-HT increased the pain threshold to mechanical and thermal stimuli, with highest effect at the dose of 500nM, which was most strongly attenuated by AM-630, CB2 antagonist, administration. The single action blockers PF-3845 (1000nM, for FAAH) and I-RTX (1nM, for TRPV1) showed lower efficacy than AA-5-HT. Moreover AA-5-HT (500nM) elevated AEA and palmitoylethanolamide (PEA) levels.

Among the possible targets of these mediators, only the mRNA levels of CB2, GPR18 and GPR55, which are believed to be novel cannabinoid receptors, were upregulated in the spinal cord and/or DRG of CCI rats. It was previously reported that AA-5-HT acts in CB1 and TRPV1-dependent manner after systemic administration, but here for the first time we show that AA-5-HT action at the spinal level involves CB2, with potential contributions from GRP18 and/or GPR55 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27326920

Anandamide transporter-mediated regulation of the micturition reflex in urethane-anesthetized rats.

“The aim of this study was to investigate the effects of an anandamide transporter inhibitor that can increase endogenous anandamide concentration on the micturition reflex in urethane-anesthetized rats.

These results suggest that anandamide, an endogenous CB ligand, can modulate the micturition reflex and that anandamide transporters play an important role in this modulation. In urethane-anesthetized rats, inhibition of the uptake of anandamide can inhibit the micturition reflex and these inhibitory effects of VDM11 are at least in part mediated by the CB1 receptor.”

http://www.ncbi.nlm.nih.gov/pubmed/27256398