Endocannabinoids and the Digestive Tract and Bladder in Health and Disease.

“Components of the so-called endocannabinoid system, i.e., cannabinoid receptors, endocannabinoids, as well as enzymes involved in endocannabinoid synthesis and degradation, have been identified both in the gastrointestinal and in the urinary tract.

Evidence suggests that the endocannabinoid system is implicated in many gastrointestinal and urinary physiological and pathophysiological processes, including epithelial cell growth, inflammation, analgesia, and motor function.

A pharmacological modulation of the endocannabinoid system might be beneficial for widespread diseases such as gastrointestinal reflux disease, irritable bowel syndrome, inflammatory bowel disease, colon cancer, cystitis, and hyperactive bladder.

Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids, non-psychotropic cannabinoids (notably cannabidiol), and palmitoylethanolamide, an acylethanolamide co-released with the endocannabinoid anandamide, are promising candidates for gastrointestinal and urinary diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26408170

Biosynthesis and Fate of Endocannabinoids.

“Since the discovery of the two cannabinoid receptors, CB1 and CB2, several molecules, commonly defined as endocannabinoids, able to bind to and functionally activate these receptors, have been discovered and characterized.

Although the general thought was that the endocannabinoids were mainly derivatives of the n-6 fatty acid arachidonic acid, recent data have shown that also derivatives (ethanolamides) of n-3 fatty acids may be classified as endocannabinoids.

Whether the n-3 endocannabinoids follow the same biosynthetic and metabolic routes of the n-6 endocannabinoids is not yet clear and so warrants further investigation.

In this review, we describe the primary biosynthetic and metabolic pathways for the two well-established endocannabinoids, anandamide and 2-arachidonoylglycerol.”

http://www.ncbi.nlm.nih.gov/pubmed/26408157

The effects of endocannabinoid receptor agonist anandamide and antagonist rimonabant on opioid analgesia and tolerance in rats.

“The role of the cannabinoid (CB) system in the tolerance to analgesic effect of opioid remains obscure. The aim of the present study was to evaluate the effects of the endocannabinoid nonselective receptor agonist anandamide (AEA) and CB1 receptor antagonist rimonabant (SR141716) on morphine analgesia and tolerance in rats.

The findings suggested that AEA in combination with morphine produced a significant increase in expression of analgesic tolerance to morphine.

Conversely, cannabinoid receptor antagonist SR141716 attenuated morphine analgesic tolerance.

In addition, administration of AEA with morphine increased morphine analgesia.

In conclusion, we observed that the cannabinoid receptor agonist anandamide and CB1 receptor antagonist SR141716 plays a significant role in the opioid analgesia and tolerance.”

http://www.ncbi.nlm.nih.gov/pubmed/26374993

Cannabidiol and sodium nitroprusside: two novel neuromodulatory pharmacological interventions to treat and prevent psychosis.

“Since most patients with schizophrenia do not respond properly to treatment, scientific effort has been driven to the development of new compounds acting on pharmacological targets beyond the dopaminergic system.

Therefore, the aim is to review basic and clinical research findings from studies evaluating the effects of cannabidiol (CBD), an inhibitor of the reuptake and metabolism of anandamide and several other effects on nervous system, and sodium nitroprusside, a nitric oxide donor, on the prevention and treatment of psychosis.

Animal and human research supports that CBD and sodium nitroprusside might be effective in the prevention and treatment of psychosis in general and especially in schizophrenia.

The evidence available to date shows that CBD and sodium nitroprusside act in pathways associated with psychotic symptoms and that they may be important agents in the management of prodromal psychotic states and psychosis.

This underscores the relevance of further research on the effects of these agents and others that mediate the activity of the cannabinoid system and of nitric oxide, as well as comparative studies of their antipsychotic effects and those of other antipsychotic drugs currently used to treat schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/26350340

G protein-coupled receptor 18: A potential role for endocannabinoid signalling in metabolic dysfunction.

“Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels.

Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid-derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression.

These cannabinoid receptors are part of a large family of G protein-coupled receptors (GPCRs).

GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus.

Obesity is considered a state of chronic low grade inflammation elicited by an immunological response.

Interestingly, the newly deorphanised G protein-coupled receptor GPR18, which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function.

In this review, the current scientific knowledge on GPR18 is explored including its localisation, signalling pathways and pharmacology.

Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described.

Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26337420

Effect of anandamide on endometrial adenocarcinoma (Ishikawa) cell numbers: implications for endometrial cancer therapy.

The Lancet logo

“We have previously shown that patients with endometrial carcinoma express elevated concentrations of the endocannabinoid, anandamide (AEA), in both their plasma and their endometrial tissue and that the endometrial carcinoma cell line, Ishikawa, contains the receptors to which AEA binds.

Several studies have reported that human and rodent cancer cell lines die in response to high AEA concentrations.

The incidence of endometrial carcinoma continues to escalate and, although surgical treatment has improved, morbidity and mortality rates have not. A move towards a novel non-surgical therapeutic option is thus required, and the endocannabinoid system provides a good candidate target.

We aimed to investigate the effects of AEA on the survival and proliferation of an endometrial carcinoma cell model.

Our results show that AEA induces a decrease in Ishikawa cell number probably through inhibition of cell proliferation rather than cell death.

These data suggest that the increased plasma and tissue AEA concentrations observed in patients with endometrial cancer is a counter mechanism against further cancer growth and points to the endocannabinoid system as a potentially new therapeutic target.”

http://www.ncbi.nlm.nih.gov/pubmed/26312842

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(15)60335-X/fulltext

Cannabinoids and Schizophrenia: Risks and Therapeutic Potential.

“The endocannabinoid system has been implicated in psychosis both related and unrelated to cannabis exposure, and studying this system holds potential to increase understanding of the pathophysiology of schizophrenia.

Anandamide signaling in the central nervous system may be particularly important.

Δ9-Tetrahydrocannabinol in cannabis can cause symptoms of schizophrenia when acutely administered, and cannabidiol (CBD), another compound in cannabis, can counter many of these effects.

CBD may have therapeutic potential for the treatment of psychosis following cannabis use, as well as schizophrenia, possibly with better tolerability than current antipsychotic treatments. CBD may also have anti-inflammatory and neuroprotective properties.

Establishing the role of CBD and other CBD-based compounds in treating psychotic disorders will require further human research.”

http://www.ncbi.nlm.nih.gov/pubmed/26311150

http://www.thctotalhealthcare.com/category/schizophrenia/

The emerging role of the endocannabinoid system in the pathogenesis and treatment of kidney diseases.

“Endocannabinoids (eCBs) are endogenous lipid ligands that bind to cannabinoid receptors that also mediate the effects of marijuana.

The eCB system is comprised of eCBs, anandamide, and 2-arachidonoyl glycerol, their cannabinoid-1 and cannabinoid-2 receptors (CB1 and CB2, respectively), and the enzymes involved in their biosynthesis and degradation.

It is present in both the central nervous system and peripheral organs including the kidney.

The current review focuses on the role of the eCB system in normal kidney function and various diseases, such as diabetes and obesity, that directly contributes to the development of renal pathologies.

Normally, activation of the CB1 receptor regulates renal vascular hemodynamics and stimulates the transport of ions and proteins in different nephron compartments. In various mouse and rat models of obesity and type 1 and 2 diabetes mellitus, eCBs generated in various renal cells activate CB1 receptors and contribute to the development of oxidative stress, inflammation, and renal fibrosis.

These effects can be chronically ameliorated by CB1 receptor blockers.

In contrast, activation of the renal CB2 receptors reduces the deleterious effects of these chronic diseases.

Because the therapeutic potential of globally acting CB1 receptor antagonists in these conditions is limited due to their neuropsychiatric adverse effects, the recent development of peripherally restricted CB1 receptor antagonists may represent a novel pharmacological approach in treating renal diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26280171

The endocannabinoid anandamide affects the synthesis of human syncytiotrophoblast-related proteins.

“The human syncytiotrophoblast (hST) has a major role in the production of important placental hormones.

Several molecules regulate hST endocrine function but the role of endocannabinoids in this process is still unknown.

Here, we report that the endocannabinoid anandamide (AEA) decreased cAMP levels, impaired human chorionic gonadotropin secretion, placental alkaline phosphatase activity and decreased aromatase mRNA levels and protein expression, through cannabinoid (CB) receptor activation.

AEA also downregulated leptin and placental protein 13 transcription, though via a CB receptor-independent mechanism.

All this evidence suggests AEA is a novel modulator of hormone synthesis by the syncytiotrophoblast, supporting the importance of the endocannabinoid signalling in placental function.”

http://www.ncbi.nlm.nih.gov/pubmed/26202891

Enhanced vasorelaxation effect of endogenous anandamide on thoracic aorta in renal vascular hypertension rats.

“Emerging evidence indicated that anandamide (AEA) stimulated vasorelaxation in both spontaneously hypertensive rats (SHRs) and L-NAME-induced hypertensive rats. Yet it remains unknown whether AEA modulates vasomotion of aorta in renovascular hypertensive (RVH) rats.

The aim of present study was to explore the effect of AEA on relaxation of thoracic aortas in two-kidney one-clip (2K1C)-induced RVH rats.

Taken together, the present study demonstrated that AEA enhanced endothelium-dependent aortic relaxation through activation of both CB1 and CB2 receptors and P-eNOS/NO pathway in 2K1C rats.”

http://www.ncbi.nlm.nih.gov/pubmed/26173564