Anandamide exerts its antiproliferative actions on cholangiocarcinoma by activation of the GPR55 receptor

Logo of nihpa

“We have previously shown that AEA exerts growth-suppressing effects on cholangiocarcinoma by inducing apoptosis.

At the time, we assumed that AEA was acting via a receptor-independent mechanism.

However, given the recent discovery and characterization of GPR55 as a novel AEA receptor, our data need to be reassessed to determine if GPR55 activation can decrease cholangiocarcinoma cell proliferation.

Thus, our aims are to determine if these AEA-mediated effects on cholangiocarcinoma cell growth can be attributed to the activation of GPR55.

This data represent the first evidence that GPR55 activation by anandamide can lead to the recruitment and activation of the Fas death receptor complex and that targeting GPR55 activation may be a viable option for the development of therapeutic strategies to treat cholangiocarcinoma.

In conclusion, we have clearly demonstrated a role for GPR55 in the antiproliferative effects of AEA in vivo andin vitro

Cholangiocarcinoma has a very poor prognosis and survival rate; therefore we propose that the development of novel therapeutic strategies that target GPR55 may prove beneficial for the treatment of this devastating disease.

Consistent with our observation that AEA has antiproliferative and pro-apoptotic properties, cannabinoids of various origins (endogenous, plant-derived or synthetic analogues) have been shown to suppress cancer cell growth in vitro as well as in vivo.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126905/

 

The endocannabinoid anandamide inhibits cholangiocarcinoma growth via activation of the noncanonical Wnt signaling pathway.

Logo of ajpgi

“Cholangiocarcinomas are cancers that have poor prognosis and limited treatment options.

Marijuana and its derivatives have been used in medicine for many centuries.

…cannabinoids might be effective antitumoral agents because of their ability to inhibit the growth of various types of cancer cell lines in culture and in laboratory animals.

Indeed, we have recently demonstrated that the endocannabinoid anandamide (AEA) has antiproliferative effects on cholangiocarcinoma cell lines in vitro via a cannabinoid receptor-independent pathway involving the stabilization of lipid raft-membrane structures and the recruitment of death-receptor complexes into the lipid rafts.

Modulation of the endocannabinoid system may be important in cholangiocarcinoma treatment.

The antiproliferative actions of the noncanonical Wnt signaling pathway warrants further investigation to dissect the mechanism by which this may occur.

We propose that the development of novel therapeutic strategies aimed at modulating the endocannabinoid system, or mimicking the mode of action of AEA, would prove beneficial for the treatment of this devastating disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2604798/

 

Sperm Release from the Oviductal Epithelium Depends on Ca2+ Influx Upon Activation of CB1 and TRPV1 by Anandamide.

“The oviduct acts as a functional sperm reservoir in many mammalian species. Both binding and release of spermatozoa from the oviductal epithelium are mainly modulated by sperm capacitation. Several molecules from oviductal fluid are involved in the regulation of sperm function.

Anandamide is a lipid mediator involved in reproductive physiology. Previously, we demonstrated that anandamide, through activation of the cannabinoid receptor type 1 (CB1), promotes sperm release from bovine oviductal epithelial cells, and through CB1 and the transient receptor potential vanilloid 1 (TRPV1), induces sperm capacitation.

Our results also suggest that a phospholypase C (PLC) might mediate the activation of CB1 and TRPV1 in sperm release from the bovine oviduct.

Therefore, our findings indicate that anandamide, through CB1 and TRPV1 activation, is involved in sperm release from the oviductal reservoir. An increase of sperm Ca2+ levels and the PLC activation might be involved in anandamide signaling pathway. ”

http://www.ncbi.nlm.nih.gov/pubmed/26129689

Endocannabinoid signaling in female reproductive events: a potential therapeutic target?

“Nearly 30 years after the discovery in 1964 of the psychoactive ingredient of cannabis (Cannabis sativa), Δ9-tetrahydrocannabinol, its endogenous counterparts were discovered and collectively termed endocannabinoids (eCBs): N-arachidonoylethanolamine (anandamide) in 1992 and 2-arachidonoylglycerol in 1995.

Since then, intense research has identified additional eCBs and an ensemble of proteins that bind, synthesize and degrade them, the so-called eCB system.

Altogether, these new compounds have been recognized as key mediators of several aspects of human pathophysiology, and in particular of female fertility.

Here, the main features of the eCB system are presented, in order to put in a better perspective the relevance of eCB signaling in virtually all steps of human reproduction and to highlight emerging hopes that elements of this system might indeed become novel targets to combat fertility problems.”

http://www.ncbi.nlm.nih.gov/pubmed/26126134

Cannabinoid pharmacology in the cardiovascular system: potential protective mechanisms through lipid signalling.

“Cannabinoids include not only plant-derived compounds (of which delta9-tetrahydrocannabinol is the primary psychoactive ingredient of cannabis), but also synthetic agents and endogenous substances termed endocannabinoids which include anandamide (2-arachidonoylethanolamide) and 2-arachidonoylglycerol.

Cannabinoids act on specific, G-protein-coupled, receptors which are currently divided into two types, CB1 and CB2. Relatively selective agonists and antagonists for these receptors have been developed, although one agent (SR141716A) widely used as an antagonist at CB1 receptors has non-cannabinoid receptor-mediated effects at concentrations which are often used to define the presence of the CB1 receptor.

Both cannabinoid receptors are primarily coupled to Gi/o proteins and act to inhibit adenylyl cyclase. Stimulation of CB1 receptors also modulates the activity of K+ and Ca2+ channels and of protein kinase pathways including protein kinase B (Akt) which might mediate effects on apoptosis. CB, receptors may activate the extracellular signal-regulated kinase cascade through ceramide signalling.

Cannabinoid actions on the cardiovascular system have been widely interpreted as being mediated by CB1 receptors although there are a growing number of observations, particularly in isolated heart and blood vessel preparations, that suggest that other cannabinoid receptors may exist.

Interestingly, the currently identified cannabinoid receptors appear to be related to a wider family of lipid receptor, those for the lysophospholipids, which are also linked to Gi/o protein signalling.

Anandamide also activates vanilloid VR1 receptors on sensory nerves and releases the vasoactive peptide, calcitonin gene-related peptide (CGRP), which brings about vasodilatation through its action on CGRP receptors.

Current evidence suggests that endocannabinoids have important protective roles in pathophysiological conditions such as shock and myocardial infarction.

Therefore, their cardiovascular effects and the receptors mediating them are the subject of increasing investigative interest.”

http://www.ncbi.nlm.nih.gov/pubmed/15005177

The endocannabinoid anandamide during lactation increases body fat content and CB1 receptor levels in mice adipose tissue.

“Type 1 cannabinoid receptors (CB1R) modulate energy balance; thus, their premature activation may result in altered physiology of tissues involved in such a function.

Activation of CB1R mainly occurs after binding to the endocannabinoid Anandamide (AEA).

The objective of this study was to evaluate the effects of AEA treatment during lactation on epididymal and body fat content, in addition to CB1R protein level at weaning.

This in vivo study shows for the first time that a progressive increase in body fat accumulation can be programmed in early stages of life by oral treatment with the endocannabinoid AEA, a fact associated with an increased amount of epididymal fat pads and a higher expression of CB1R in this tissue.”

http://www.ncbi.nlm.nih.gov/pubmed/26098446

Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures.

“Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation.

Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes.

Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2) but also other targets (e.g., GPR18/GPR55).

In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.”

http://www.ncbi.nlm.nih.gov/pubmed/26090232

Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain.

“The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol.

In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain.

Changes found in these biomarkers of the ECS correlated with pain, affective and cognitive symptoms in these patients.

The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease.”

http://www.ncbi.nlm.nih.gov/pubmed/26067584

http://www.thctotalhealthcare.com/category/osteoarthritis/

Rhythmic control of endocannabinoids in the rat pineal gland.

“Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors.

The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors.

Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness.

Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands.

These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal.

Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.”

http://www.ncbi.nlm.nih.gov/pubmed/26061461

Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity.

“Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited.

Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication…

In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity.”

http://www.ncbi.nlm.nih.gov/pubmed/25933444