Enhancement of endocannabinoid signalling protects against cocaine-induced neurotoxicity.

“Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited.

Evidence suggest that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication…

In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signalling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity.”

The role of the endocannabinoid system in pain.

“Preparations of the Cannabis sativa plant have been used to analgesic effect for millenia, but only in recent decades has the endogenous system responsible for these effects been described.

The endocannabinoid (EC) system is now known to be one of the key endogenous systems regulating pain sensation, with modulatory actions at all stages of pain processing pathways.

The EC system is composed of two main cannabinoid receptors (CB1 and CB2) and two main classes of endogenous ligands or endocannabinoids (ECs).

The receptors have distinct expression profiles, with CB1 receptors found at presynaptic sites throughout the peripheral and central nervous systems (PNS and CNS, respectively), whilst CB2 receptor is found principally (but not exclusively) on immune cells.

The endocannabinoid ligands are lipid neurotransmitters belonging to either the N-acyl ethanolamine (NAEs) class, e.g. anandamide (AEA), or the monoacylglycerol class, e.g. 2-arachidonoyl glycerol (2-AG).

Both classes are short-acting transmitter substances, being synthesised on demand and with signalling rapidly terminated by specific enzymes. ECs acting at CB1 negatively regulate neurotransmission throughout the nervous system, whilst those acting at CB2 regulate the activity of CNS immune cells.

Signalling through both of these receptor subtypes has a role in normal nociceptive processing and also in the development resolution of acute pain states.

In this chapter, we describe the general features of the EC system as related to pain and nociception and discuss the wealth of preclinical and clinical data involving targeting the EC system with focus on two areas of particular promise: modulation of 2-AG signalling via specific enzyme inhibitors and the role of spinal CB2 in chronic pain states.”

http://www.ncbi.nlm.nih.gov/pubmed/25846617

http://www.thctotalhealthcare.com/category/pain-2/

Localization and production of peptide endocannabinoids in the rodent CNS and adrenal medulla.

“The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles.

Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin…

These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS.”

http://www.ncbi.nlm.nih.gov/pubmed/25839900

Endocannabinoid System

Wiley

“The endocannabinoid system (ECS) is defined as the signalling system composed of: (1) the two G‐protein‐coupled receptors known as cannabinoid receptors of type‐1 and ‐2 (CB1 and CB2); (2) the two most studied endogenous agonists of such receptors, the endocannabinoids anandamide (N‐arachidonoyl‐ethanolamine) and 2‐AG (2‐arachidonoyl‐glycerol); (3) enzymes and other proteins regulating the tissue levels of endocannabinoids; and (4) enzymes and other proteins that, together with endocannabinoids, regulate the activity of cannabinoid receptors.

A key role of the ECS is emerging in the control not only of central and peripheral nervous system functions, but also of most aspects of mammalian physiology, including energy intake, processing and storage, the immune response, reproduction and cell fate.

The ECS is also subject to dysregulation, and this seems to contribute to the symptoms and progress of several diseases. Hence, the possibility of developing new therapies starting from our increasing knowledge of the ECS is discussed.”

http://www.els.net/WileyCDA/ElsArticle/refId-a0023403.html

http://www.thctotalhealthcare.com/category/endocannabinoid-system/

Differential expression of endocannabinoid system in normal and preeclamptic placentas: effects on nitric oxide synthesis.

“Anandamide (AEA) is a lipid mediator that participates in the regulation of several reproductive functions.

This study investigated the endocannabinoid system in normal (NP) and preeclamptic (PE) placentas, and analyzed the potential functional role of AEA in the regulation of nitric oxide synthesis…

These data suggest that AEA may be one of the factors involved in the regulation of NOS activity in normal and preeclamptic placental villous.

Interestingly, the differential expression of NAPE-PLD and FAAH suggests that AEA could play an important role in the pathophysiology of PE.”

http://www.ncbi.nlm.nih.gov/pubmed/23122699

Decreased circulating anandamide levels in preeclampsia.

“The endocannabinoid system has a key role in female reproduction, including implantation, decidualization and placentation. A growing number of studies indicate that placental and peripheral blood anandamide levels correlate closely with both spontaneous miscarriage and ectopic pregnancy.

Anandamide has also been implicated in blood pressure regulation.

In this study, we aimed to determine circulating anandamide levels in preeclampsia for the first time in the literature…

In conclusion, we demonstrated for the first time in the literature that serum anandamide concentrations are decreased in women with preeclampsia.”

http://www.ncbi.nlm.nih.gov/pubmed/25716652

Anandamide Drives Cell Cycle Progression through CB1 Receptors in a Rat Model of Synchronized Liver Regeneration.

“The endocannabinoid system, through cannabinoid receptor signaling by endocannabinoids, is involved in a wide range of functions and physiopathological conditions.

… liver regeneration, a useful in vivo model of synchronized cell proliferation, is characterized by a peak of anandamide that elicits through CB1 receptor the expression of critical mitosis genes. The aim of this study was to focus on the timing of endocannabinoid signaling changes during the different phases of the cell cycle, exploiting the rat liver regeneration model following partial hepatectomy…

These results support the notion that the signaling mediated by anandamide through CB1 receptor may be important for the entry and progression of cells into the cell cycle and hence for their proliferation under mitogenic signals.”

 http://www.ncbi.nlm.nih.gov/pubmed/25684344

http://www.thctotalhealthcare.com/category/liver-disease/

Fatty Acid Binding Proteins (FABPs) are Intracellular Carriers for Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD).

Image result for fatty acid binding proteins

“Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex.

Recent reports suggest that CBD and THC elevates the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance.

Fatty acid binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH).

By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and we demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs.

Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption.

Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD.

Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids.

These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy towards epilepsy and other neurological disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/25666611

Role of endocannabinoid signalling in the dorsolateral periaqueductal grey in the modulation of distinct panic-like responses.

“Since the cannabinoid CB1 receptor modulates various types of aversive responses, this study tested the hypothesis that enhancement of endocannabinoid signalling in the dorsolateral periaqueductal grey inhibits panic-like reactions in rats…

The present results confirm the anti-aversive property of direct CB1 receptor activation in the dorsolateral periaqueductal grey…

Altogether, these results suggest that anandamide signalling is recruited only under certain types of aversive stimuli.”

http://www.ncbi.nlm.nih.gov/pubmed/25601395

http://www.thctotalhealthcare.com/category/panic-attack/

Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence.

“Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC).

Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic.

However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP).

Therefore, in the present paper we have attempted to verify if directly interfering with ECB metabolism/reuptake in the prelimbic (PL) portion of the medial PFC (MPFC) and dHIP would produce different effects in two conceptually distinct animal models: the elevated plus maze (EPM) and the Vogel conflict test (VCT).

We observed drugs which interfere with ECB reuptake/metabolism in both the PL and in the dentate gyrus of the dHIP induced anxiolytic-like effect, in both the EPM and in the VCT via CB1 receptors, suggesting CB1 signaling in these brain regions modulate defensive responses to both innate and learned threatening stimuli.

This data further strengthens previous results indicating modulation of hippocampal and MPFC activity via CB1 by ECBs, which could be therapeutically targeted to treat anxiety disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/25595265

http://www.thctotalhealthcare.com/category/anxiety-2/