Cannabis and cannabinoid receptors.

Abstract

“Cannabis and cannabinoids exert many of their biological functions through receptor-mediated mechanisms. Two types of cannabinoid receptors have been identified, namely CB(1) and CB(2), both coupled to a G protein. CB(1) receptors have been detected in the central nervous system (where they are responsible for the characteristic effects of Cannabis, including catalepsy, depression of motor activity, analgesia and feelings of relaxation and well being) and in peripheral neurons (where their activation produces a suppression in neurotransmitter release in the heart, bladder, intestine and vas deferens). Cannabinoid CB(2) receptors have only been detected outside the central nervous system, mostly in cells of the immune system, presumably mediating cannabinoid-induced immunosuppression and antinflammatory effects. With the discovery of cannabinoid receptors for exogenous cannabinoids, also endogenous cannabinoids (anandamide, 2-arachidonylglycerol) have been described.”

http://www.ncbi.nlm.nih.gov/pubmed/10930707

Recent advantages in cannabinoid research.

Abstract

“Although the active component of cannabis Delta9-THC was isolated by our group 35 years ago, until recently its mode of action remained obscure. In the last decade it was established that Delta9-THC acts through specific receptors – CB1 and CB2 – and mimics the physiological activity of endogenous cannabinoids of two types, the best known representatives being arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG). THC is officially used against vomiting caused by cancer chemotherapy and for enhancing appetite, particularly in AIDS patients. Illegally, usually by smoking marijuana, it is used for ameliorating the symptoms of multiple sclerosis, against pain, and in a variety of other diseases. A synthetic cannabinoid, HU-211, is in advanced clinical tests against brain damage caused by closed head injury. It may prove to be valuable against stroke and other neurological diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/10575284

The cannabinoid acids: nonpsychoactive derivatives with therapeutic potential.

Abstract

   “The discovery of carboxylic acid metabolites of the cannabinoids (CBs) dates back more than three decades. Their lack of psychotropic activity was noted early on, and this resulted in a total absence of further research on their possible role in the actions of the CBs. More recent studies have revealed that the acids possess both analgesic and anti-inflammatory properties and may contribute to the actions of the parent drug. A synthetic analog showed similar actions at considerably lower doses. In this review, a brief survey of the extensive literature on metabolism of delta 9-tetrahydrocannabinol to the acids is presented, while more emphasis is given to the recent findings on the biological actions of this class of CBs. A possible mechanism involving effects on eicosanoids for some of these actions is also suggested. Finally, an analogy with a putative metabolite of anandamide, an endogenous CB, is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/10341359

Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia

“Cannabidiol is a component of marijuana that does not activate cannabinoid receptors, but moderately inhibits the degradation of the endocannabinoid anandamide. We previously reported that an elevation of anandamide levels in cerebrospinal fluid inversely correlated to psychotic symptoms. Furthermore, enhanced anandamide signaling let to a lower transition rate from initial prodromal states into frank psychosis as well as postponed transition. In our translational approach, we performed a double-blind, randomized clinical trial of cannabidiol vs amisulpride, a potent antipsychotic, in acute schizophrenia to evaluate the clinical relevance of our initial findings. Either treatment was safe and led to significant clinical improvement, but cannabidiol displayed a markedly superior side-effect profile. Moreover, cannabidiol treatment was accompanied by a significant increase in serum anandamide levels, which was significantly associated with clinical improvement. The results suggest that inhibition of anandamide deactivation may contribute to the antipsychotic effects of cannabidiol potentially representing a completely new mechanism in the treatment of schizophrenia.”

“Cannabidiol is a non-psychotropic component of marijuana that binds to CB1 receptors with only comparably very low affinity and is devoid of overt cannabimimetic or pro-psychotic properties. Biochemical studies indicate that cannabidiol may enhance endogenous anandamide signaling indirectly, by inhibiting the intracellular degradation of anandamide catalyzed by the enzyme fatty acid amide hydrolase (FAAH).Furthermore, preliminary clinical case reports suggest that cannabidiol might exert antipsychotic effects in schizophrenic patients. In addition, experimental studies show that cannabidiol reduces psychosis-like effects of Δ9-tetrahydrocannabinol and synthetic analogs.

Read more:: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316151/

Endocannabinoids in nervous system health and disease: the big picture in a nutshell.

Abstract

“The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related ‘phytocannabinoid’ compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the ‘endocannabinoids’ and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness.”

http://www.ncbi.nlm.nih.gov/pubmed/23108539

The endocannabinoid system: emotion, learning and addiction.

Abstract

“The identification of the cannabinoid receptor type 1 (CB1 receptor) was the milestone discovery in the elucidation of the behavioural and emotional responses induced by the Cannabis sativa constituent Delta(9)-tetrahydrocannabinol. The subsequent years have established the existence of the endocannabinoid system. The early view relating this system to emotional responses is reflected by the fact that N-arachidonoyl ethanolamine, the pioneer endocannabinoid, was named anandamide after the Sanskrit word ‘ananda’, meaning ‘bliss’. However, the emotional responses to cannabinoids are not always pleasant and delightful. Rather, anxiety and panic may also occur after activation of CB1 receptors. The present review discusses three properties of the endocannabinoid system as an attempt to understand these diverse effects. First, this system typically functions ‘on-demand’, depending on environmental stimuli and on the emotional state of the organism. Second, it has a wide neuro-anatomical distribution, modulating brain regions with different functions in responses to aversive stimuli. Third, endocannabinoids regulate the release of other neurotransmitters that may have even opposing functions, such as GABA and glutamate. Further understanding of the temporal, spatial and functional characteristics of this system is necessary to clarify its role in emotional responses and will promote advances in its therapeutic exploitation.”

http://www.ncbi.nlm.nih.gov/pubmed/18422832

The endocannabinoid system as a target for the treatment of cannabis dependence

“Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive downregulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling; and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.”

“Direct modulation of CB1receptors as a treatment for cannabis dependence”

“Even though, as we have seen above, direct activation of CB1 receptors may yield variable behavioral responses, low-dosage oral Δ9-THC has shown promise in the management of human cannabis withdrawal. The rationale for this approach is that controlled replacement of Δ9-THC for smoked cannabis may reduce the severity of withdrawal symptoms and allow a dependent individual to remain abstinent. Additionally, given that dependent subjects are experienced with cannabis, and Δ9-THC is administered at low doses, administration of the latter is unlikely to result in the anxiety responses observed with inexperienced users or high dosages. Consistent with this idea, two independent clinical studies have shown that low-dose oral Δ9-THC attenuates withdrawal symptom scores and is minimally intoxicating in non-treatment seeking daily cannabis users.””

“Several therapeutic modalities are currently being considered to treat cannabis dependence, including activation or deactivation of CB1receptors. While these stategies show promise in measures of cannabis withdrawal and abstinence, they may also create problems of abuse liability or adverse emotional effects. An additional approach might be to enhance endogenous anandamide signaling using agents that attenuate the deactivation of this endocannabinoid transmitter.”

“Increasing anandamide signaling with deactivation inhibitors, such as the FAAH blocker URB597, potentiates stress coping behaviors in animals, indicating a role for anandamide in physiopathological context of stress-related responses. Similarly, elevation of anandamide in specific brain regions opposes the anhedonic effects of stress and promotes normal positive responses to pleasurable stimuli in rodents. It is reasonable to hypothesize that these effects could act to blunt the negative affect and stress, which is common during cannabis withdrawal, thus allowing cannabis dependent individuals to successfully abstain from drug use.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647947/

Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond.

Abstract

“A major finding–that (-)-trans-Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is largely responsible for the psychotropic effects of cannabis–prompted research in the 1970s and 1980s that led to the discovery that this plant cannabinoid acts through at least two types of cannabinoid receptor, CB(1) and CB(2), and that Delta(9)-THC and other compounds that target either or both of these receptors as agonists or antagonists have important therapeutic applications. It also led to the discovery that mammalian tissues can themselves synthesize and release agonists for cannabinoid receptors, the first of these to be discovered being arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol. These ‘endocannabinoids’ are released onto their receptors in a manner that appears to maintain homeostasis within the central nervous system and sometimes either to oppose or to mediate or exacerbate the unwanted effects of certain disorders. This review provides an overview of the pharmacology of cannabinoid receptors and their ligands. It also describes actual and potential clinical uses both for cannabinoid receptor agonists and antagonists and for compounds that affect the activation of cannabinoid receptors less directly, for example by inhibiting the enzymatic hydrolysis of endocannabinoids following their release.”

http://www.ncbi.nlm.nih.gov/pubmed/18482430

Therapeutic potential of cannabinoid receptor ligands: current status.

Abstract

“There are at least two types of cannabinoid receptors, CB1 also named CNR1 and CB2 also named CNR2, both coupled to G proteins. CB1 receptors exist primarily on central and peripheral neurons. CB2 receptors are present mainly on immune cells. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol (2-AG), and 2-archidonyl glyceryl ether. Following their release, endocannabinoids are removed from the extracellular space and then degraded by intracellular enzymic hydrolysis. CB1/CB2 agonists are already used clinically as antiemetic or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis, spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilatation that accompanies advanced cirrhosis, and cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/16810344

Brain’s own cannabis compound protects against inflammation

“Some clinical studies have indicated that marijuana or its active cannabinoid ingredient alleviates symptoms of the inflammatory disease multiple sclerosis (MS). Also, researchers have found that the brain’s natural “endocannabinoids” are released after brain injury and are believed to alleviate neuronal damage. However, scientists have not understood how such substances act within the brain’s own immune system.

 Now, experiments by Oliver Ullrich and colleagues have pinpointed how one of the brain’s endocannabinoids protects neurons from inflammation after such damage. They say their studies could lead to new drugs to treat the inflammation and brain degeneration from MS or other such disorders.

In an article in the January 5, 2006, issue of Neuron, the researchers reported experiments showing how the endocannabinoid anandamide (AEA) protects brain cells from inflammation. Such a role in the brain’s immune system is distinct from cannabinoids’ effects on neuronal signaling that produce the behavioral effects of marijuana.”

http://www.bio-medicine.org/biology-news/Brains-own-cannabis-compound-protects-against-inflammation-2810-1/