Endocannabinoids and the regulation of their levels in health and disease.

Abstract

“PURPOSE OF REVIEW:

Endocannabinoids are defined as endogenous agonists of cannabinoid receptors, that is, of the two G-protein-coupled receptors for the Cannabis psychoactive principle Delta-tetra-hydrocannabinol. Two such endogenous mediators have been most thoroughly studied so far: anandamide and 2-arachidonoylglycerol. Here we review the mechanisms for the regulation of their levels under physiological and pathological conditions, and recent findings on their role in disease.

RECENT FINDINGS:

It is becoming increasingly clear that, although both anandamide and 2-arachidonoyl-glycerol are produced and degraded ‘on demand’, the levels of these two compounds appear to be regulated in different, and sometimes even opposing, ways, often using redundant molecular mechanisms. Alterations of endocannabinoid levels have been found in both animal models of pain, neurological and neurodegenerative states, gastrointestinal disorders and inflammatory conditions, and in blood, cerebrospinal fluid and bioptic samples from patients with various diseases.

SUMMARY:

Endocannabinoid levels appear to be transiently elevated as an adaptive reaction to re-establish normal homeostasis when this is acutely and pathologically perturbed. In some chronic conditions, however, this system also contributes to the progress or symptoms of the disorder. As a consequence, new therapeutic drugs are being designed from both stimulants and blockers of endocannabinoid action.”

http://www.ncbi.nlm.nih.gov/pubmed/17353660

The endocannabinoid system : a new target for the regulation of energy balance and metabolism.

Abstract

“Recent studies have provided evidence that the endocannabinoid (EC) system has very significant effects on energy balance and metabolism through the central control of appetite and by affecting peripheral metabolism. Endocannabinoids are endogenous phospholipid derivatives which bind and activate cannabinoid receptors type 1 and type 2 (CB1 and CB2 receptors). The CB1 receptor, a G-protein coupled receptor, is believed to be responsible for the majority of the central effects of endocannaboids on appetite. Chronic positive energy balance and obesity have been associated with an overactivation of the endocannaboid system which has been suggested to contribute to the development of abdominal obesity and to associated metabolic abnormalities which increase the risk of cardiovascular disease and type 2 diabetes. Animal studies had shown that stimulation of the cannabinoid CB1 receptor with endocannaboids such as anandamide could induce first an increase in food intake leading to body weight gain. Furthermore, an exciting development in this field has been the discovery of CB1 receptors in many peripheral tissues, including key organs involved in carbohydrate and lipid metabolism such as the adipose tissue and liver. Thus, blocking CB1 receptors located in the liver and adipose tissue could have an additional impact on the metabolic risk profile beyond what could be explained by the reduction in food intake and the related body weight loss. Preclinical studies have shown that rimonabant, the first CB1-receptor blocker to be available in clinical practice, could not only induce a reduction in food intake, but could also produce body weight loss beyond what could be explained by its effect on food intake. Thus, the evidence from preclinical studies have suggested that CB1 blockade could represent a relevant approach to reduce food intake, to induce body weight loss, and, most importantly, to “fix” the dysmetabolic state of viscerally obese patients at increased cardiometabolic risk.”

http://www.ncbi.nlm.nih.gov/pubmed/17667864

The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning?

Abstract

“The endocannabinoid system (ECS) consists of two receptors (CB(1) and CB(2)), several endogenous ligands (primarily anandamide and 2-AG), and over a dozen ligand-metabolizing enzymes. The ECS regulates many aspects of embryological development and homeostasis, including neuroprotection and neural plasticity, immunity and inflammation, apoptosis and carcinogenesis, pain and emotional memory, and the focus of this review: hunger, feeding, and metabolism. This mini-review summarizes the main findings that supported the clinical use of CB1 antagonists/inverse agonists, the clinical concerns that have emerged, and the possible future of cannabinoid-based therapy of obesity and related diseases. The ECS controls energy balance and lipid metabolism centrally (in the hypothalamus and mesolimbic pathways) and peripherally (in adipocytes, liver, skeletal muscle and pancreatic islet cells), acting through numerous anorexigenic and orexigenic pathways. Obese people seem to display an increased endocannabinoid tone, driving CB(1) receptor in a feed-forward dysfunction. Several CB(1) antagonists/inverse agonists have been developed for the treatment of obesity. Although these drugs were found to be efficacious at reducing food intake as well as abdominal adiposity and cardiometabolic risk factors, they resulted in adverse psychiatric effects that limited their use and finally led to the end of the clinical use of systemic CB(1) ligands with significant inverse agonist activity for complicated obesity. However, the existence of alternatives such as CB(1) partial agonists, neutral antagonists, antagonists restricted to the periphery, allosteric modulators and other potential targets within the ECS indicate that a cannabinoid-based therapy for the management of obesity and its associated cardiometabolic sequelae should remain open for consideration.”

http://www.ncbi.nlm.nih.gov/pubmed/20347862

Understanding metabolic homeostasis and imbalance: what is the role of the endocannabinoid system?

Abstract

“Endogenous endocannabinoids (ECs) (anandamide and 2-arachidonoyl glycerol) are part of the leptin-regulated neural circuitry involved in appetite regulation. One of the sites of the orexigenic action of ECs involves activation of cannabinoid-1 (CB1) receptors in the lateral hypothalamus, from which neurons involved in mediating food reward project into the limbic system. In animal models of obesity, pharmacologic blockade or genetic ablation of CB1 receptors causes a transient reduction in food intake accompanied by sustained weight loss, reduced adiposity, and reversal of hormonal/metabolic changes, such as elevated levels of plasma leptin, insulin, glucose, and triglyceride, and reduced levels of plasma adiponectin (Acrp30). However, the beneficial effects of CB1 blockade on weight and metabolism cannot be explained by appetite suppression alone. Animal studies suggest that CB1 blockade exerts a direct peripheral as well as a central effect on fat metabolism. CB1 receptor blockade with rimonabant has been shown to not only reduce weight and adiposity but also to directly modulate fat metabolism at peripheral sites in skeletal muscle, adipose tissue, and the liver. Preclinical animal studies suggest that CB1 blockade acts on adipocytes to increase Acrp30 expression, on hepatocytes to decrease de novo lipogenesis and increase fatty acid oxidation, and on skeletal muscle to reduce blood glucose and insulin levels. Extrapolating from animal studies to the clinic, CB1 receptor blockade offers a promising strategy not only for reducing weight and abdominal adiposity but also for preventing and reversing its metabolic consequences.”

http://www.ncbi.nlm.nih.gov/pubmed/17720356

The endocannabinoid system: a new target for the regulation of energy balance and metabolism.

Abstract

“Recent studies have provided evidence that the endocannabinoid (EC) system has very significant effects on energy balance and metabolism through the central control of appetite and by affecting peripheral metabolism. Endocannabinoids are endogenous phospholipid derivatives which bind and activate cannabinoid receptors type 1 and type 2 (CB1 and CB2 receptors). The CB1 receptor, a G-protein coupled receptor, is believed to be responsible for the majority of the central effects of endocannaboids on appetite. Chronic positive energy balance and obesity have been associated with an overactivation of the endocannaboid system which has been suggested to contribute to the development of abdominal obesity and to associated metabolic abnormalities which increase the risk of cardiovascular disease and type 2 diabetes. Animal studies had shown that stimulation of the cannabinoid CB1 receptor with endocannaboids such as anandamide could induce first an increase in food intake leading to body weight gain. Furthermore, an exciting development in this field has been the discovery of CB1 receptors in many peripheral tissues, including key organs involved in carbohydrate and lipid metabolism such as the adipose tissue and liver. Thus, blocking CB1 receptors located in the liver and adipose tissue could have an additional impact on the metabolic risk profile beyond what could be explained by the reduction in food intake and the related body weight loss. Preclinical studies have shown that rimonabant, the first CB1-receptor blocker to be available in clinical practice, could not only induce a reduction in food intake, but could also produce body weight loss beyond what could be explained by its effect on food intake. Thus, the evidence from preclinical studies have suggested that CB1 blockade could represent a relevant approach to reduce food intake, to induce body weight loss, and, most importantly, to “fix” the dysmetabolic state of viscerally obese patients at increased cardiometabolic risk.”

http://www.ncbi.nlm.nih.gov/pubmed/17667864

The role of the endocannabinoid system in skeletal muscle and metabolic adaptations to exercise: potential implications for the treatment of obesity.

Abstract

“The results of recent studies add the endocannabinoid system, and more specifically CB1 receptor signalling, to the complex mechanisms that negatively modulate insulin sensitivity and substrate oxidation in skeletal muscle. CB1 receptors might become overactive in the skeletal muscle during obesity due to increased levels of endocannabinoids. However, quite surprisingly, one of the most studied endocannabinoids, anandamide, when administered in a sufficient dose, was shown to improve muscle glucose uptake and activate some key molecules of insulin signalling and mitochondrial biogenesis. This is probably because anandamide is only a partial agonist at CB1 receptors and interacts with other receptors (PPARĪ³, TRPV1), which may trigger positive metabolic effects. This putative beneficial role of anandamide is worth considering because increased plasma anandamide levels were recently reported after intense exercise. Whether the endocannabinoid system is involved in the positive exercise effects on mitochondrial biogenesis and glucose fatty acid oxidation remains to be confirmed. Noteworthy, when exercise becomes chronic, a decrease in CB1 receptor expression in obese metabolically deregulated tissues occurs. It is then tempting to hypothesize that physical activity would represent a complementary alternative approach for the clinical management of endocannabinoid system deregulation in obesity, without the side effects occurring with CB1 receptor antagonists.”

http://www.ncbi.nlm.nih.gov/pubmed/22943701

Biomarkers of Endocannabinoid System Activation in Severe Obesity

BACKGROUND:

“Obesity is a worldwide epidemic, and severe obesity is a risk factor for many diseases, including diabetes, heart disease, stroke, and some cancers. Endocannabinoid system (ECS) signaling in the brain and peripheral tissues is activated in obesity and plays a role in the regulation of body weight. The main research question here was whether quantitative measurement of plasma endocannabinoids, anandamide, and related N-acylethanolamines (NAEs), combined with genotyping for mutations in fatty acid amide hydrolase (FAAH) would identify circulating biomarkers of ECS activation in severe obesity.”

CONCLUSIONS/SIGNIFICANCE:

“Significantly increased levels of the endocannabinoid anandamide and related NAEs were found in carriers of the FAAH 385 A mutant alleles compared with wild-type FAAH controls. This evidence supports endocannabinoid system activation due to the effect of FAAH 385 mutant A genotype on plasma AEA and related NAE analogs. This is the first study to document that FAAH 385 A mutant alleles have a direct effect on elevated plasma levels of anandamide and related NAEs in humans. These biomarkers may indicate risk for severe obesity and may suggest novel ECS obesity treatment strategies.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808340/

The endocannabinoid system: physiology and pharmacology.

Abstract

“The endogenous cannabinoid system is an ubiquitous lipid signalling system that appeared early in evolution and which has important regulatory functions throughout the body in all vertebrates. The main endocannabinoids (endogenous cannabis-like substances) are small molecules derived from arachidonic acid, anandamide (arachidonoylethanolamide) and 2-arachidonoylglycerol. They bind to a family of G-protein-coupled receptors, of which the cannabinoid CB(1) receptor is densely distributed in areas of the brain related to motor control, cognition, emotional responses, motivated behaviour and homeostasis. Outside the brain, the endocannabinoid system is one of the crucial modulators of the autonomic nervous system, the immune system and microcirculation. Endocannabinoids are released upon demand from lipid precursors in a receptor-dependent manner and serve as retrograde signalling messengers in GABAergic and glutamatergic synapses, as well as modulators of postsynaptic transmission, interacting with other neurotransmitters, including dopamine. Endocannabinoids are transported into cells by a specific uptake system and degraded by two well-characterized enzymes, the fatty acid amide hydrolase and the monoacylglycerol lipase. Recent pharmacological advances have led to the synthesis of cannabinoid receptor agonists and antagonists, anandamide uptake blockers and potent, selective inhibitors of endocannabinoid degradation. These new tools have enabled the study of the physiological roles played by the endocannabinoids and have opened up new strategies in the treatment of pain, obesity, neurological diseases including multiple sclerosis, emotional disturbances such as anxiety and other psychiatric disorders including drug addiction. Recent advances have specifically linked the endogenous cannabinoid system to alcoholism, and cannabinoid receptor antagonism now emerges as a promising therapeutic alternative for alcohol dependence and relapse.”

CONCLUSION

“Since the discovery of anandamide, the increasing information on the physiological roles played by the endogenous cannabinoid system and its contribution to pathology have led to this signalling system becoming more important in neurobiology. The intense pharmacological research based on this information has yielded, in a very short time, potent, selective drugs targeting the endogenous cannabinoid system that have opened up new avenues for the understanding and treatment of major diseases including cancer, pain, neurodegeneration, anxiety and addiction. This is a very promising starting point for a new age that takes over from the ancient use of Cannabis as a medicine. Now is the time for clinical trials aimed at evaluating the efficacy of cannabinoid drugs in disorders lacking effective therapeutic approaches, such as alcoholism.”

http://alcalc.oxfordjournals.org/content/40/1/2.long

Pharmacological actions of cannabinoids.

Abstract

“Mammalian tissues express at least two types of cannabinoid receptor, CB1 and CB2, both G protein coupled. CB1 receptors are expressed predominantly at nerve terminals where they mediate inhibition of transmitter release. CB2 receptors are found mainly on immune cells, one of their roles being to modulate cytokine release. Endogenous ligands for these receptors (endocannabinoids) also exist. These are all eicosanoids; prominent examples include arachidonoylethanolamide (anandamide) and 2-arachidonoyl glycerol. These discoveries have led to the development of CB1- and CB2-selective agonists and antagonists and of bioassays for characterizing such ligands. Cannabinoid receptor antagonists include the CB1-selective SR141716A, AM251, AM281 and LY320135, and the CB2-selective SR144528 and AM630. These all behave as inverse agonists, one indication that CB1 and CB2 receptors can exist in a constitutively active state. Neutral cannabinoid receptor antagonists that seem to lack inverse agonist properties have recently also been developed. As well as acting on CB1 and CB2 receptors, there is convincing evidence that anandamide can activate transient receptor potential vanilloid type 1 (TRPV1) receptors. Certain cannabinoids also appear to have non-CB1, non-CB2, non-TRPV1 targets, for example CB2-like receptors that can mediate antinociception and “abnormal-cannabidiol” receptors that mediate vasorelaxation and promote microglial cell migration. There is evidence too for TRPV1-like receptors on glutamatergic neurons, for alpha2-adrenoceptor-like (imidazoline) receptors at sympathetic nerve terminals, for novel G protein-coupled receptors for R-(+)-WIN55212 and anandamide in the brain and spinal cord, for novel receptors for delta9-tetrahydrocannabinol and cannabinol on perivascular sensory nerves and for novel anandamide receptors in the gastro-intestinal tract. The presence of allosteric sites for cannabinoids on various ion channels and non-cannabinoid receptors has also been proposed. In addition, more information is beginning to emerge about the pharmacological actions of the non-psychoactive plant cannabinoid, cannabidiol. These recent advances in cannabinoid pharmacology are all discussed in this review.”

http://www.ncbi.nlm.nih.gov/pubmed/16596770

Cannabinoids and the digestive tract.

“In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors.

Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16596788