Endocannabinoid Regulation of Neuroendocrine Systems.

“The hypothalamus is a part of the brain that is critical for sustaining life through its homeostatic control and integrative regulation of the autonomic nervous system and neuroendocrine systems. Neuroendocrine function in mammals is mediated mainly through the control of pituitary hormone secretion by diverse neuroendocrine cell groups in the hypothalamus.

Cannabinoid receptors are expressed throughout the hypothalamus, and endocannabinoids have been found to exert pronounced regulatory effects on neuroendocrine function via modulation of the outputs of several neuroendocrine systems.

Here, we review the physiological regulation of neuroendocrine function by endocannabinoids, focusing on the role of endocannabinoids in the neuroendocrine regulation of the stress response, food intake, fluid homeostasis, and reproductive function.

Cannabis sativa (marijuana) has a long history of recreational and/or medicinal use dating back to ancient times. It was used as an analgesic, anesthetic, and antianxiety herb as early as 2600 B.C.

The hedonic, anxiolytic, and mood-elevating properties of cannabis have also been cited in ancient records from different cultures. However, it was not until 1964 that the psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol, was isolated and its chemical structure determined (Gaoni & Mechoulam, 1964).”

Cannabinoid Modulation of Neuroinflammatory Disorders

Table 1.

Cannabis sativa is a herb belonging to the Cannabaceae family, characterized by palmate leaves and numerous fibers. Its first record as a medicine dates back to 5000 years ago and it was found in China, where cannabis was used for a myriad of purposes and diseases, including malaria, neuropathic pain, nausea, sexual dysfunction and constipation.

The use of cannabis spread from Central Asia and deeply influenced Indian folk medicine. However, sedative and psychotropic effects of cannabis turned it into a recreational drug. This fact resulted in discrimination against the consumption of the cannabis plant and its derivatives, which delayed the scientific findings in this field…

In recent years, a growing interest has been dedicated to the study of the endocannabinoid system. The isolation of Cannabis sativa main psychotropic compound, Δ(9)-tetrahydrocannabinol (THC), has led to the discovery of an atypical neurotransmission system that modulates the release of other neurotransmitters and participates in many biological processes, including the cascade of inflammatory responses.

In this context, cannabinoids have been studied for their possible therapeutic properties in neuroinflammatory diseases. In this review, historic and biochemical aspects of cannabinoids are discussed, as well as their function as modulators of inflammatory processes and therapeutic perspectives for neurodegenerative disorders, particularly, multiple sclerosis.

Cannabinoid compounds may be extracted from the plant (phytocannabinoids) or be artificially obtained (synthetic cannabinoids)…

To date, it is still impossible to prove or rule out all benefits of cannabis described empirically by ancient herbal practitioners. For now, science aims to understand how cannabinoid compounds are associated with neuroinflammation and how cannabis-based medicine can help millions of patients worldwide.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386505/

Cannabis Proves Effective In Treating Crohn’s Disease According To New Study

cannibis crohn's disease drug

“A new clinical study published in the journal Pharmacology and by the National Institute of Health has found that cannabis is effective in treating Crohn’s disease, which is a form of inflammatory bowel disease (IBD)…

The study, entitled: “Cannabis Finds Its Way into Treatment of Crohn’s Disease”  is co-authored by Rudolf Schicho, PhD and M. Storr, both of the Institute of Experimental and Clinical Pharmacology, Medical University of Graz in Graz, Austria.

In the study abstract, Schicho and Storr note that In ancient medicine, cannabis was widely used to treat and cure bowel disturbances and inflammation, and a recent clinical study now shows that the medicinal herb Cannabis sativa lived up to expectations and proved to be highly efficient in cases of inflammatory bowel diseases.”

http://bionews-tx.com/news/2014/01/29/cannabis-proves-effective-treating-crohns-disease-according-new-study/

 http://www.thctotalhealthcare.com/category/crohns-disease/

[Ttextual research of Cannabis sativa varieties and medicinal part].

“Cannabis used now is identical with that described in ancient herbal literatures.

People did not make a sharp distinction on medicinal part of C. sativa …unripe fruit, fruit and kernel of seed were all used..,both fruit and kernel can be used as medicinal part.

CONCLUSION:

The plants for Fructus Cannabis described in modern and ancient literatures are identical.

The base of the original plant is the same either in ancient or modern.

And the toxicity of the fruit is more than that of the kernel.

The kernel is the exact medicinal part of C. Sativa.”

http://www.ncbi.nlm.nih.gov/pubmed/20862977

Cannabis Finds Its Way into Treatment of Crohn’s Disease.

“In ancient medicine, cannabis has been widely used to cure disturbances and inflammation of the bowel. A recent clinical study now shows that the medicinal plant Cannabis sativa has lived up to expectations and proved to be highly efficient in cases of inflammatory bowel diseases.

In a prospective placebo-controlled study, it has been shown what has been largely anticipated from anecdotal reports, i.e. that cannabis produces significant clinical benefits in patients with Crohn’s disease. The mechanisms involved are not yet clear but most likely include peripheral actions on cannabinoid receptors 1 and 2, and may also include central actions.”

http://www.ncbi.nlm.nih.gov/pubmed/24356243

“In their prospective study, Naftali et al. used THC-free Cannabis as placebo with no other cannabinoids present. However, we should consider that also other ingredients of Cannabis, such as cannabidiol, cannabigerol, and tetrahydrocannabivarine (THCV), all of them non-psychotropic components of Cannabis, have proven antiinflammatory effects in experimental intestinal inflammation. Their actions partly involve non-CB receptor mechanisms via, for instance, peroxisome proliferator-activated receptors (PPAR) and transient receptor potential cation channels subfamily V receptors (TRPV) and should be regarded as additive beneficial effects of Cannabis in the improvement of colitis in addition to THC-mediated effects.

 …an 8-week treatment with THC-rich Cannabis caused a decrease of the Crohn’s disease activity index (CDAI) in 90% of patients without producing significant side effects…

In summary, in agreement with the ancient use of Cannabis in intestinal disturbances and one decade of animal research, Cannabis was shown in a clinical trial to reduce symptoms in patients with CD. This elegant translation should be followed by larger trials confirming these results and by trials establishing the involved mechanisms to open a promising direction for future treatment of IBD.”

Full-text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076530/