Role of endocannabinoids in regulating drug dependence.

 “This review will discuss the latest knowledge of how the endocannabinoid system might be involved in treating addiction to the most common illicit drugs. Experimental models are providing increasing evidence for the pharmacological management of endocannabinoid signaling not only to block the direct reinforcing effects of cannabis, opioids, nicotine and ethanol, but also for preventing relapse to the various drugs of abuse, including opioids, cocaine, nicotine, alcohol and metamphetamine. Preclinical and clinical studies suggest that the endocannabinoid system can be manipulated by the CB1 receptor antagonist SR141716A, that might constitute a new generation of compounds for treating addiction across different classes of abused drugs.”

“In the last 25 years the neurobiological and behavioral mechanisms that lead to drug dependence have been extensively investigated but clinical treatment is still unsatisfactory and ineffective in many subjects.”

“Experimental models are now providing evidence for the pharmacological management of endocannabinoid signaling not only to block the direct reinforcing effects of cannabis, opioids, nicotine and ethanol, but also to prevent relapse to these various substances of abuse, also including cocaine and metamphetamine. The endocannabinoid system can be manipulated by SR141716A and by all the new compounds that protect AEA and 2-AG from deactivation and prolong the lifespan of these endocannabinoid substances in vivo. Rimonabant reduces the motivational effect of drug-related stimuli and drug re-exposure, probably by altering synaptic plasticity, thus providing an effective means of preventing relapse and a new tool for the treatment of drug abuse.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656312/

Current evidence supporting a role of cannabinoid CB1 receptor (CB1R) antagonists as potential pharmacotherapies for drug abuse disorders.

Abstract

“Since the discovery of the cannabinoid CB1 receptor (CB1R) in 1988, and subsequently of the CB2 receptor (CB2R) in 1993, there has been an exponential growth of research investigating the functions of the endocannabinoid system. The roles of CB1Rs have been of particular interest to behavioral pharmacologists because of their selective presence within the central nervous system (CNS) and because of their association with brain-reward circuits involving mesocorticolimbic dopamine systems. One potential role that has become of considerable recent focus is the ability of CB1Rs to modulate the effects of drugs of abuse. Many drugs of abuse elevate dopamine levels, and the ability of CB1R antagonists or inverse agonists to attenuate these elevations has suggested their potential application as pharmacotherapies for treating drug abuse disorders. With the identification of the selective CB1R antagonist, SR141716, in 1994, and its subsequent widespread availability, there has been a rapid expansion of research investigating its ability to modulate the effects of drugs of abuse. The preliminary clinical reports of its success in retarding relapse in tobacco users have accelerated this expansion. This report critically reviews preclinical and clinical studies involving the ability of CB1R antagonists to attenuate the effects of drugs of abuse, while providing an overview of the neuroanatomical and neurochemical points of contact between the endocannabinoid system and systems mediating abuse-related effects.”

http://www.ncbi.nlm.nih.gov/pubmed/16148435

Endocannabinoid release from midbrain dopamine neurons: a potential substrate for cannabinoid receptor antagonist treatment of addiction.

Abstract

“Substantial evidence suggests that all commonly abused drugs act upon the brain reward circuitry to ultimately increase extracellular concentrations of the neurotransmitter dopamine in the nucleus accumbens and other forebrain areas. Many drugs of abuse appear to increase dopamine levels by dramatically increase the firing and bursting rates of dopamine neurons located in the ventral mesencephalon. Recent clinical evidence in humans and behavioral evidence in animals indicate that cannabinoid receptor antagonists such as SR141716A (Rimonabant) can reduce the self-administration of, and craving for, several commonly addictive drugs. However, the mechanism of this potentially beneficial effect has not yet been identified. We propose, on the basis of recent studies in our laboratory and others, that these antagonists may act by blocking the effects of endogenously released cannabinoid molecules (endocannabinoids) that are released in an activity- and calcium-dependent manner from mesencephalic dopamine neurons. It is hypothesized that, through the antagonism of cannabinoid CB1 receptors located on inhibitory and excitatory axon terminals targeting the midbrain dopamine neurons, the effects of the endocannabinoids are occluded. The data from these studies therefore suggest that the endocannabinoid system and the CB1 receptors located in the ventral mesencephalon may play an important role in regulating drug reward processes, and that this substrate is recruited whenever dopamine neuron activity is increased.”

http://www.ncbi.nlm.nih.gov/pubmed/15878779

Cannabinoid CB1 receptors control conditioned drug seeking.

Abstract

“Recent developments have implicated cannabinoid CB1 receptors as a novel target for a new class of therapeutic agents used to treat drug addiction. CB1 receptors are expressed in the motivational circuitry of the brain and modulate drug seeking. Blockade of the CB1 receptor is particularly effective in reducing cue-induced reinstatement of drug seeking, an animal analogue of cue-induced relapse in human addicts. These relapse-preventing properties are observed with different classes of abused drug (i.e. psychostimulants, opiates, nicotine and alcohol). In addition, recent evidence indicates a more general role of CB1 receptors in reward-related memories, which is consistent with the proposed role of endocannabinoids in memory-related plasticity. Relapse-preventing actions and inhibitory effects on weight gain were confirmed recently in clinical trials with the CB1 antagonist rimonabant. Collectively, these clinical and preclinical studies suggest that antagonists of CB1 receptors offer a novel approach in the treatment of addictive behaviours.”

http://www.ncbi.nlm.nih.gov/pubmed/15992935

An endocannabinoid mechanism in relapse to drug seeking: a review of animal studies and clinical perspectives.

Abstract

“Detoxification from drug abuse is strongly threatened by the occurrence of renewed episodes of drug intake. In human addicts, relapse to drug seeking may take place even after a considerably long period from the last drug consumption. Over the last decade, the endocannabinoid system has received remarkable attention due to its unique features, including its rewarding properties closely resembling those of the most commonly abused substances and its multiple therapeutic implications. Although limited at present, evidence is now emerging on a possible participation of the endogenous cannabinoid system in the regulation of relapsing phenomena. Both stimulation and blockade of the central cannabinoid CB-sub1 receptor have proved to play an important role in drug- as well as in cue-induced reinstatement of drug seeking behavior. Indeed, while CB-sub1 receptor stimulation may elicit relapse not only to cannabinoid seeking but also to cocaine, heroin, alcohol and methamphetamine, this effect is significantly attenuated, when not fully prevented, by pretreatment with the CB-sub1 receptor antagonist rimonabant. However, corroborating data on the involvement of the cannabinoid system in stress-induced reinstatement are still rather scarce. The present review attempts to collect data obtained from different laboratories using diverse experimental approaches, to provide a comprehensive picture of the recent evidence of a relationship between the cannabinoid system and the neurobiological mechanisms leading to relapse. For each class of abused drugs, the conspicuous progress made in delineating the role of the endocannabinoid system in relapse to drug seeking has been examined by placing particular emphasis on the findings obtained from behavioral studies. After summarizing findings and implications emerging from the reviewed studies, we conclude by briefly discussing what information is still missing and how missing information might be obtained.”

http://www.ncbi.nlm.nih.gov/pubmed/16839608

Drug Addiction

Abstract

“Many drugs of abuse, including cannabinoids, opioids, alcohol and nicotine, can alter the levels of endocannabinoids in the brain. Recent studies show that release of endocannabinoids in the ventral tegmental area can modulate the reward-related effects of dopamine and might therefore be an important neurobiological mechanism underlying drug addiction. There is strong evidence that the endocannabinoid system is involved in drug-seeking behavior (especially behavior that is reinforced by drug-related cues), as well as in the mechanisms that underlie relapse to drug use. The cannabinoid CB1 antagonist/inverse agonist rimonabant has been shown to reduce the behavioral effects of stimuli associated with drugs of abuse, including nicotine, alcohol, cocaine, and marijuana. Thus, the endocannabinoid system represents a promising target for development of new treatments for drug addiction.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039293/

Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.

“Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions).

The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol.

Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol,

the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/19729208

Expression of the cannabinoid system in muscle: effects of a high-fat diet and CB1 receptor blockade

Abstract

“The ECS (endocannabinoid system) plays an important role in the onset of obesity and metabolic disorders, implicating central and peripheral mechanisms predominantly via CB1 (cannabinoid type 1) receptors. CB1 receptor antagonist/inverse agonist treatment improves cardiometabolic risk factors and insulin resistance. However, the relative contribution of peripheral organs to the net beneficial metabolic effects remains unclear. In the present study, we have identified the presence of the endocannabinoid signalling machinery in skeletal muscle and also investigated the impact of an HFD (high-fat diet) on lipid-metabolism-related genes and endocannabinoid-related proteins. Finally, we tested whether administration of the CB1 inverse agonist AM251 restored the alterations induced by the HFD. Rats were fed on either an STD (standard/low-fat diet) or an HFD for 10 weeks and then treated with AM251 (3 mg/kg of body weight per day) for 14 days. The accumulated caloric intake was progressively higher in rats fed on the HFD than the STD, resulting in a divergence in body weight gain. AM251 treatment reduced accumulated food/caloric intake and body weight gain, being more marked in rats fed on the HFD. CB2 (cannabinoid type 2) receptor and PPARα (peroxisome-proliferator-activated receptor α) gene expression was decreased in HFD-fed rats, whereas MAGL (monoglyceride lipase) gene expression was up-regulated. These data suggest an altered endocannabinoid signalling as a result of the HFD. AM251 treatment reduced CB2 receptor, PPARγ and AdipoR1 (adiponectin receptor 1) gene expression in STD-fed rats, but only partially normalized the CB2 receptor in HFD-fed rats. Protein levels corroborated gene expression results, but also showed a decrease in DAGL (diacylglycerol) β and DAGLα after AM251 treatment in STD- and HFD-fed rats respectively. In conclusion, the results of the present study indicate a diet-sensitive ECS in skeletal muscle, suggesting that blockade of C1 receptors could work towards restoration of the metabolic adaption imposed by diet.”

“In the present study, we focused on skeletal muscles, which are an important tissue for glucose and fat oxidation, being an important site for insulin action [27]. However, despite the fact that AEA can modify the pathways regulating fatty acid oxidation in the skeletal muscle, probably via CB1 receptors, suggesting that CB1 receptor antagonism would have an important role in oxidative metabolism and energy regulation [28,29], there is still a general lack of clarity regarding the physiological functions and molecular mechanism implicated. In fact, there are almost no studies demonstrating the presence of endocannabinoid signalling proteins and their sensitivity to HFDs (high-fat diets). Therefore, in the present study, we have (i) investigated the presence of the endocannabinoid signalling machinery in skeletal muscle, (ii) analysed the impact of an HFD on lipid and glucose metabolism and endocannabinoid-related genes, and (iii) monitored the effects of the CB1 receptor inverse agonist AM251 during an STD (standard/low-fat diet) and HFD on the endocannabinoid machinery and the genes related to lipid oxidative metabolism in skeletal muscle of rats. Among the many molecules involved in lipid metabolism of skeletal muscle, we evaluated changes in the gene and protein expression of relevant components of the ECS, such as the CB1 and CB2 receptors and some of the enzymes responsible for their synthesis.

The presence of the ECS in skeletal muscle

As a final note, the regulatory mechanisms may be different at rest and during exercise, may change as the exercise intensity increases, and this could be influential in endocannabinoid production [31,49]. It would be interesting to repeat this type of experiment combining exercise and diet in its original design. Regulation of skeletal muscle fat and glucose metabolism is clearly multifactorial, and different mechanisms may dominate in different conditions; besides, potential variations may exist between individuals in response to stimulating or blocking CB1 receptors. This could cause differences in response to treatment with CB1 receptor antagonists between different obese states. In conclusion, we have provided findings identifying important relevant players involved in the signalling pathways of CB1 receptor antagonism in skeletal muscle and determined the extent of changes in this system associated with either an HFD or CB1 receptor blockade.”

http://www.biochemj.org/bj/433/0175/bj4330175.htm

Rimonabant: a novel selective cannabinoid-1 receptor antagonist for treatment of obesity.

Abstract

“PURPOSE:

The pharmacology, pharmacokinetics, clinical efficacy, safety, drug interactions, and dosage and administration of rimonabant in the treatment of obesity and related metabolic factors are reviewed.

SUMMARY:

Discovery of the cannabinoid receptors has led to the development of rimonabant, a cannabinoid-1 (CB(1)) antagonist. Selective blockade of this receptor has been shown to lead to decreased appetite and food intake in animal models. Clinical studies have shown that rimonabant 20 mg once daily produces significant decreases in weight and waist circumference in obese human subjects and improves the lipid profile and glucose control. The frequency of metabolic syndrome also decreased significantly with rimonabant 20 mg daily. Limited data are available regarding the pharmacokinetics and pharmacodynamics of rimonabant. Preclinical data have demonstrated a long duration of action. As of yet, no drug-drug, drug-food, or drug-disease interactions have been identified with rimonabant. Adverse reactions occurred rarely, with nausea, dizziness, diarrhea, arthralgia, and back pain being the most common. Psychiatric disorders, including depression and anxiety, were the most common reasons for subjects to withdraw from rimonabant studies. Rimonabant has been shown to be safe for up to two years of treatment. Further research will clarify currently unknown areas, including pharmacokinetics, drug interactions, and the drug’s role in standard therapy.

CONCLUSION:

Rimonabant, a selective CB(1) antagonist, is a novel treatment option for obese and overweight individuals. Significant weight loss, decrease in waist circumference, and improvements in lipid profile and glucose control have been shown in clinical trials of rimonabant.”

http://www.ncbi.nlm.nih.gov/pubmed/17322160

Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk.

Abstract

“Introduction: Obesity and related cardiometabolic derangements are spiraling global health problems urgently in need of safe, effective and durable pharmacotherapy. Areas covered: As an orexigenic and anabolic biosignaling network, the endocannabinoid system interacts with other information-transducing pathways to help ensure metabolic homeostasis. Hyperphagia stimulates reinforcing neuronal circuits favoring energy intake and conservation, inviting overweight/obesity and cardiometabolic risk factors (‘metabolic syndrome’). Associated increases in cannabinoid 1 G protein-coupled receptor (CB1R) activity/expression further exacerbate food consumption and the metabolic shift toward fat production and accumulation. The role of CB1R activity in hyperphagia and weight gain spurred the development of rimonabant (SR141716; Acomplia), the first-in-class CB1R antagonist/inverse agonist weight-loss drug. Rimonabant and similar CB1R inverse agonists also exert pleiotropic actions in addition to weight-loss effects that help correct obesity-related metabolic derangements and reduce cardiovascular risk in humans. The medicinal utility of these agents was crippled by clinically significant central and peripheral adverse effects that appear to reflect CB1R inverse agonists as a class. Consequently, increased attention is being given to CB1R neutral antagonists, CB1R blockers with intrinsically weak, if any, functional potency to elicit the negative-efficacy responses associated with inverse agonists. Laboratory studies demonstrate that CB1R neutral antagonists – whether readily accessible to the central nervous system or not (i.e., ‘periphero-neutral’ antagonists) – retain the salient therapeutic effects of CB1R inverse agonists on hyperphagia, weight-gain, and obesity-driven metabolic abnormalities with the distinct advantage of being associated with significantly less preclinical adverse events than are conventional CB1R inverse agonists such as rimonabant. Expert opinion: CB1R (periphero-)neutral antagonists merit continued analysis of their molecular pharmacology and evaluation of their therapeutic significance and translational potential as new-generation medicines for obesity-related derangements, including nonalcoholic fatty liver disease and type 2 diabetes, if not obesity itself.”

http://www.ncbi.nlm.nih.gov/pubmed/22646861