Enhancement of Anandamide-Mediated Endocannabinoid Signaling Corrects Autism-Related Social Impairment

Mary Ann Liebert, Inc. publishers

We recently uncovered a signaling mechanism by which the endocannabinoid anandamide mediates the action of oxytocin, a neuropeptide that is crucial for social behavior, to control social reward. Oxytocin signaling has been implicated in autism spectrum disorder (ASD), and social reward is a key aspect of social functioning that is thought to be disrupted in ASD. Therefore, as a proof of principle for the core component of ASD—social impairment—we tested an endocannabinoid-enhancing compound on two widely studied mouse models of ASD, the BTBR and fmr1−/− (model of Fragile X Syndrome).

Remarkably, we found that FAAH blockade completely reversed the social impairment in both mouse models. CB1 receptor blockade prevented the prosocial action of FAAH inhibition in BTBR mice.

The results suggest that increasing anandamide activity at CB1 receptors improves ASD-related social impairment and identify FAAH as a novel therapeutic target for ASD.

In conclusion, the present study provides new insights into the role of endocannabinoid signaling in social behavior and validates FAAH as a novel therapeutic target for the social impairment of ASD.”

Dual therapy targeting the endocannabinoid system prevents experimental diabetic nephropathy.

Image result for Nephrol Dial Transplant

“The endocannabinoid system has been implicated in the pathogenesis of diabetic nephropathy (DN). We investigated the effect of combined therapy with AM6545, a ‘peripherally’ restricted cannabinoid receptor type 1 (CB1R) neutral antagonist, and AM1241, a cannabinoid receptor type 2 (CB2R) agonist, in experimental DN.

RESULTS.:

Single treatment with either AM6545 or AM1241 alone reduced diabetes-induced albuminuria and prevented nephrin loss both in vivo and in vitro in podocytes exposed to glycated albumin. Dual therapy performed better than monotherapies, as it abolished albuminuria, inflammation, tubular injury and markedly reduced renal fibrosis. Converging anti-inflammatory mechanisms provide an explanation for this greater efficacy as dual therapy abolished diabetes-induced renal monocyte infiltration and M1/M2 macrophage imbalance in vivo and abrogated the profibrotic effect of M1 macrophage-conditioned media on cultured mesangial cells.

CONCLUSION.:

‘Peripheral’ CB1R blockade is beneficial in experimental DN and this effect is synergically magnified by CB2R activation.”

https://www.ncbi.nlm.nih.gov/pubmed/28387811

Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats.

Image result for european neuropsychopharmacology

“Weight gain is an important side effect of most atypical antipsychotic drugs such as olanzapine. Moreover, although many animal models with metabolic side effects have been well defined, the interaction with other pathways has to be considered.

The endocannabinoid system and the CB1 receptor (CB1R) are among the most promising central and peripheral targets involved in weight and energy balance.

In this study we developed a rat model based 15-days treatment with olanzapine that shows weight gain and an alteration of the blood parameters involved in the regulation of energy balance and glucose metabolism. Consequently, we analysed whether, and by which mechanism, a co-treatment with the novel CB1R neutral antagonist NESS06SM, could attenuate the adverse metabolic effects of olanzapine compared to the reference CB1R inverse agonist rimonabant.

Our results showed alterations of the cannabinoid markers in the nucleus accumbens and of orexigenic/anorexigenic markers in the hypothalamus of female rats treated with olanzapine. These molecular modifications could explain the excessive food intake and the resulting weight gain. Moreover, we confirmed that a co-treatment with CB1R antagonist/inverse agonist compounds decreased food intake and weight increment and restored all blood parameters, without altering the positive effects of olanzapine on behaviour. Furthermore, rimonabant and NESS06SM restored the metabolic enzymes in the liver and fat tissue altered by olanzapine.

Therefore, CB1 receptor antagonist/inverse agonist compounds could be good candidate agents for the treatment of weight gain induced by olanzapine.”

https://www.ncbi.nlm.nih.gov/pubmed/28377074

Binding Site Characterization of AM1336, a Novel Covalent Inverse Agonist at Human Cannabinoid 2 Receptor, Using Mass Spectrometric Analysis.

Image result for J Proteome Res

“Cannabinoid 2 receptor (CB2R), a Class A G-protein coupled receptor (GPCR), is a promising drug target in a wide array of pathological conditions. Rational drug design has been hindered due to our poor understanding of the structural features involved in ligand binding. Binding of a high-affinity biarylpyrazole inverse agonist AM1336 to a library of the human CB2 receptor (hCB2R) cysteine-substituted mutants provided indirect evidence that two cysteines in transmembrane helix-7 (H7) were critical for the covalent attachment. Here, we used proteomics analysis of the hCB2R with bound AM1336 to directly identify peptides with covalently attached ligand and applied in-silico modeling for visualization of the ligand-receptor interactions. The hCB2R, with affinity tags (FlaghCB2His6), was produced in a baculovirus-insect cell expression system and purified as a functional receptor using immunoaffinity chromatography. Using mass spectrometry-based bottom-up proteomic analysis of the hCB2R-AM1336 we identified a peptide with AM1336 attached to the cysteine C284(7.38) in H7. The hCB2R homology model in lipid bilayer accommodated covalent attachment of AM1336 to C284(7.38), supporting both biochemical and mass spectrometric data. This work consolidates proteomics data and in-silico modeling, and integrates with our ligand-assisted protein structure (LAPS) experimental paradigm to assist in structure-based design of cannabinoid antagonist/inverse agonists.”

https://www.ncbi.nlm.nih.gov/pubmed/28374590

Post-sensitization treatment with rimonabant blocks the expression of cocaine-induced behavioral sensitization and c-Fos protein in mice.

Image result for Pharmacol Biochem Behav.

“CB1 receptor antagonists have been shown to prevent acute and long-term behavioral effects of cocaine.

Here we evaluate the effectiveness of the CB1 receptor antagonist rimonabant to modify sensitized responses to cocaine.

Our findings add to the evidence that drugs targeting CB1 receptors are good candidates for the treatment of cocaine abuse and provide further insights into the mechanisms underlying endocannabinoid signaling within the brain reward system in the context of cocaine abuse.”

https://www.ncbi.nlm.nih.gov/pubmed/28366798

The effect of cannabinoid receptor 1 blockade on hepatic free fatty acid profile in mice with nonalcoholic fatty liver disease.

Cover image

“We used rimonabant to investigate the role of CB1 receptor on hepatic FFAs profile during NAFLD. Male mice C57BL/6 were divided into: control group fed with control diet 20 weeks (C; n=6); group fed with HFD 20 weeks (HF; n=6); group fed with control diet and treated with rimonabant after 18 weeks (R; n=9); group fed with HFD and treated with rimonabant after 18 weeks (HFR; n=10). Rimonabant (10mg/kg) was administered daily to HFR and R group by oral gavage. Rimonabant decreased liver palmitic acid proportion in HFR group compared to HF group (p<0.05). Liver stearic and oleic acid proportions were decreased in R group compared to control (p<0.01 respectively). Rimonabant increased liver linoleic and arachidonic acid proportions in HFR group compared to HF group (p<0.01 respectively). CB1 blockade may be useful in the treatment of HFD-induced NAFLD due to modulation of plasma lipid and hepatic FFA profile.”  https://www.ncbi.nlm.nih.gov/pubmed/28363784

http://www.sciencedirect.com/science/article/pii/S0009308417300063

Genetic or pharmacological depletion of cannabinoid CB1 receptor protects against dopaminergic neurotoxicity induced by methamphetamine in mice.

 

Related image

“Accumulating evidence suggests that cannabinoid ligands play delicate roles in cell survival and apoptosis decisions, and that cannabinoid CB1 receptors (CB1R) modulate dopaminergic function.

However, the role of CB1R in methamphetamine (MA)-induced dopaminergic neurotoxicity in vivo remains elusive.

Multiple high doses of MA increased phospho-ERK and CB1R mRNA expressions in the striatum of CB1R (+/+) mice. These increases were attenuated by CB1R antagonists (i.e., AM251 and rimonabant), an ERK inhibitor (U0126), or dopamine D2R antagonist (sulpiride).

CB1R agonist-induced toxic effects were significantly attenuated by CB1R knockout, CB1R antagonists or PKCδ knockout.

Therefore, our results suggest that interaction between D2R, ERK and CB1R is critical for MA-induced dopaminergic neurotoxicity and that PKCδ mediates dopaminergic damage induced by high-doses of CB1R agonist.”

https://www.ncbi.nlm.nih.gov/pubmed/28363605

Cannabinoid CB2 receptors are involved in the protection of RAW264.7 macrophages against the oxidative stress: an in vitro study.

Image result for European Journal of Histochemistry

“Research in the last decades has widely investigated the anti-oxidant properties of natural products as a therapeutic approach for the prevention and the treatment of oxidative-stress related disorders.

In this context, several studies were aimed to evaluate the therapeutic potential of phytocannabinoids, the bioactive compounds of Cannabis sativa.

Here, we examined the anti-oxidant ability of Cannabigerol (CBG), a non-psychotropic cannabinoid, still little known, into counteracting the hydrogen peroxide (H2O2)-induced oxidative stress in murine RAW264.7 macrophages. In addition, we tested selective receptor antagonists for cannabinoid receptors and specifically CB1R (SR141716A) and CB2R (AM630) in order to investigate through which CBG may exert its action.

Taken together, our in vitro results showed that CBG is able to counteract oxidative stress by activation of CB2 receptors.

Based on its antioxidant activities, CBG may hold great promise as an anti-oxidant agent and therefore used in clinical practice as a new approach in oxidative-stress related disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28348416

Antidiabetic, antidyslipidemic and toxicity profile of ENV-2: A potent pyrazole derivative against diabetes and related diseases.

Image result for Eur J Pharmacol.

“Diabetes is a major health problem and a predisposition factor for further degenerative complications and, therefore, novel therapies are urgently needed. Currently, cannabinoid receptor 1 (CB1 receptor) antagonists have been considered as promissory entities for metabolic disorders treatment.

Accordingly, the purpose of this work was the evaluation of the sub-acute antidiabetic, anti-hyperglycemic, antidyslipidemic and toxicological profile of ENV-2, a potent hypoglycemic and antioxidant CB1 receptor antagonist.

In this study, ENV-2 showed a pronounced anti-hyperglycemic effect even at a dose of 5mg/kg (P< 0.001) in a glucose tolerance test on normoglycemic rats. Moreover, after administration of ENV-2 (16mg/kg) to diabetic rats, a prominent antidiabetic activity was observed (P< 0.001), which was higher than glibenclamide.

Sub-acute treatment (10 days) of ENV-2 resulted in a significant reduction of plasma glucose (P< 0.001). Also, the levels of peripheral lipids were improved; blood triacylglycerols (TG) and cholesterol (CHOL) were diminished (P< 0.001). In addition, it was found that ENV-2 reduced IL-1β and IL-18 mRNA expression in adipose tissue (P< 0.05). Due to the satisfactory outcomes, we were interested in evaluating the toxicity of ENV-2 in both acute and sub-chronic approaches. Regarding the acute administration, the compound resulted to be non-toxic and was grouped in category 5 according to OECD. It was also found that sub-chronic administration did not increase the size of the studied organs, while no structural damage was observed in heart, lung, liver and kidney tissues. Finally, neither AST nor ALT damage hepatic markers were augmented.”

https://www.ncbi.nlm.nih.gov/pubmed/28322830

Cannabinoid receptor 1 contributes to sprouted innervation in endometrial ectopic growth through mitogen-activated protein kinase activation.

Image result for brain research journal

“The endocannabinoid system regulates neurite outgrowth and neurogenesis during development of the central nervous system.

Cannabinoid receptor 1 (CB1R) is expressed in neurons, including the somata and fibers, that innervate the endometrial ectopic cyst in rats.

 

This finding may provide a new therapeutic target for patients with endometriosis.”

https://www.ncbi.nlm.nih.gov/pubmed/28322749