Mechanisms for the coupling of cannabinoid receptors to intracellular calcium mobilization in rat insulinoma beta-cells.

“In RIN m5F rat insulinoma beta-cells, agonists at cannabinoid CB(1) receptors modulate insulin release. Here we investigated in these cells the effect of the activation of cannabinoid CB(1) and CB(2) receptors on intracellular Ca(2+) ([Ca(2+)](i)). The CB(1) agonist arachidonoyl-chloro-ethanolamide (ACEA), and the CB(2) agonist JWH133, elevated [Ca(2+)](i) in a way sensitive to the inhibitor of phosphoinositide-specific phospholipase C (PI-PLC), U73122 (but not to pertussis toxin and forskolin), and independently from extracellular Ca(2+). PI-PLC-dependent Ca(2+) mobilization by ACEA was entirely accounted for by activation of inositol-1,3,4-phosphate (IP(3)) receptors on the endoplasmic reticulum (ER), whereas the effect of JWH133 was not sensitive to all tested inhibitors of IP(3) and ryanodine receptors. ACEA, but not JWH133, significantly inhibited the effect on [Ca(2+)](i) of bombesin, which acts via G(q/11)- and PI-PLC-coupled receptors in insulinoma cells. The endogenous CB(1) agonists, anandamide and N-arachidonoyldopamine, which also activate transient receptor potential vanilloid type 1 (TRPV1) receptors expressed in RIN m5F cells, elevated [Ca(2+)](i) in the presence of extracellular Ca(2+) in a way sensitive to both CB(1) and TRPV1 antagonists. These results suggest that, in RIN m5F cells, CB(1) receptors are coupled to PI-PLC-mediated mobilization of [Ca(2+)](i) and might inhibit bombesin signaling.”

http://www.ncbi.nlm.nih.gov/pubmed/17585904

Cannabinoids and anxiety.

“The term cannabinoids encompasses compounds produced by the plant Cannabis sativa, such as delta9-tetrahydrocannabinol, and synthetic counterparts. Their actions occur mainly through activation of cannabinoid type 1 (CB1) receptors. Arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG) serve as major endogenous ligands (endocannabinoids) of CB1 receptors. Hence, the cannabinoid receptors, the endocannabinoids, and their metabolizing enzymes comprise the endocannabinoid system. Cannabinoids induce diverse responses on anxiety- and fear-related behaviors. Generally, low doses tend to induce anxiolytic-like effects, whereas high doses often cause the opposite. Inhibition of endocannabinoid degradation seems to circumvent these biphasic effects by enhancing CB1 receptor signaling in a temporarily and spatially restricted manner, thus reducing anxiety-like behaviors. Pharmacological blockade or genetic deletion of CB1 receptors, in turn, primarily exerts anxiogenic-like effects and impairments in extinction of aversive memories. Interestingly, pharmacological blockade of Transient Receptor Potential Vanilloid Type-1 (TRPV1) channel, which can be activated by anandamide as well, has diametrically opposite consequences. This book chapter summarizes and conceptualizes our current knowledge about the role of (endo)cannabinoids in fear and anxiety and outlines implications for an exploitation of the endocannabinoid system as a target for new anxiolytic drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/21309120

Pharmacological exploitation of the endocannabinoid system: new perspectives for the treatment of depression and anxiety disorders?

 “Animal experiments suggest that drugs promoting endocannabinoid action may represent a novel strategy for the treatment of depression and anxiety disorders.

Because of its analgesic, antiemetic and tranquilizing effects, the herb Cannabis sativa has been used for medical purposes for centuries. In addition, preparations of cannabis, such as marijuana, hashish or skunk, have a long history as drugs of abuse.1 Typical effects of cannabis abuse are amnesia, sedation and a feeling of well-being described as “bliss”.2 In the middle of the last century, Raphael Mechoulam and colleagues identified Δ9-tetrahydrocannabinol (Δ9-THC) as the main psychoactive ingredient of this herb. Today, it is known that Cannabis sativa contains more than 60 substances, such as cannabidiol, cannabinol and cannabicromene, which are referred to as phytocannabinoids.3 Their lipid nature posed a significant obstacle to chemical experiments, which might explain why the discovery of phytocannabinoids occurred late compared to other natural compounds (e.g. morphine was isolated from opium in the XIX century). The molecular structure rendered it likely that Δ9-THC exerts its effects primarily by changing physico-chemical characteristics of cell membranes. Therefore it came as a surprise that specific binding sites could be identified within the mammalian brain,4 followed by isolation and characterization of endogenous binding substances, named endocannabinoids.5 The development of novel pharmacological compounds targeting receptors or ligand synthesis and degradation revealed a number of complex brain functions, which are tightly controlled by the endocannabinoid system. The aim of the present review is to briefly introduce this system and its pharmacology, to discuss its involvement in psychopathology and to illustrate its therapeutic potential.

 Conclusion

 Malfunctions in the endocannabinoid system may promote the development and maintenance of psychiatric disorders such as depression, phobias and panic disorder. Thus, CB1 agonists or inhibitors of anandamide hydrolysis are expected to exert antidepressant and anxiolytic effects. Future studies should consider 1) the development of CB1 antagonists that cannot readily cross the blood-brain barrier, 2) shifts in the balance of CB1 vs. TRPV1 signalling, 3) the allosteric site of CB1 receptor and 4) the potential involvement of CB2 receptor in mood regulation. Striking similarities in (endo)cannabinoid action in animals and men render it likely that the new pharmacological principle outlined in the present article may find their way into clinical practice.”

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462010000500004&lng=en&nrm=iso&tlng=en

Role of endocannabinoid system in the ventral hippocampus of rats in the modulation of anxiety-like behaviours.

“The effects of unilateral intra-ventral hippocampus injection of URB597, a fatty acid amid hydrolase inhibitor, and AM251, a selective CB(1) receptor antagonist, on anxiety-related behaviours using elevated plus-maze test of anxiety were evaluated in the present study. Possible involvement of GABAergic system in those effects of URB597 was also evaluated. Injection of URB597 at the doses of 0.01, 0.1 and 1 microg/rat showed significant anxiogenic-like effects at 0.1 and 1 microg/rat. However, intra-ventral hippocampus injection of AM251 at the doses of 0.001, 0.01 and 0.1 microg/rat did not produce any significant effect in the elevated plus-maze. The ineffective doses of selective GABA(A) receptor antagonist, bicuculline (2 microg/rat) and selective GABA(B) receptor antagonist, phaclofen (1 microg/rat) on anxiety-related behaviours were also injected with URB597 (0.1 microg/rat). The present data showed that neither bicuculline nor phaclofen affected the anxiogenic-like effects of URB597. The results showed that injection of URB597 into the ventral hippocampus may be anxiogenic and GABAergic system may not be involved in its anxiogenic-like effects.”

http://www.ncbi.nlm.nih.gov/pubmed/19614892

The endocannabinoid and endovanilloid systems interact in the rat prelimbic medial prefrontal cortex to control anxiety-like behavior.

“Cannabinoid receptor 1 (CB(1)) agonists usually induce dose-dependent biphasic effects on anxiety-related responses. Low doses induce anxiolytic-like effects, whereas high doses are ineffective or anxiogenic, probably due to activation of Transient Receptor Potential Vanilloid Type 1 (TRPV(1)) channels.

 In this study we have investigated this hypothesis by verifying the effects of the CB(1)/TRPV(1) agonist ACEA injected into the prelimbic medial prefrontal cortex (PL) and the participation of endocannabinoids in the anxiolytic-like responses induced by TRPV(1) antagonism, using the elevated plus-maze (EPM) and the Vogel conflict test (VCT). Moreover, we verified the expression of these receptors in the PL by double labeling immunofluorescence. ACEA induced anxiolytic-like effect in the intermediate dose, which was attenuated by previous injection of AM251, a CB(1) receptor antagonist. The higher and ineffective ACEA dose caused anxiogenic- and anxiolytic-like effects, when injected after AM251 or the TRPV(1) antagonist 6-iodonordihydrocapsaicin (6-I-CPS), respectively. Higher dose of 6-I-CPS induced anxiolytic-like effects both in the EPM and the VCT, which were prevented by previous administration of AM251. In addition, immunofluorescence showed that CB(1) and TRPV(1) receptors are closely located in the PL.

These results indicate that the endocannabinoid and endovanilloid systems interact in the PL to control anxiety-like behavior.”

http://www.ncbi.nlm.nih.gov/pubmed/22691536

The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety.

“The aim of this study was to compare the effects of the genetic and pharmacological disruption of CB1 cannabinoid receptors on the elevated plus-maze test of anxiety. In the first experiment, the behaviour of CB1-knockout mice and wild-type mice was compared. In the second experiment, the cannabinoid antagonist SR141716A (0, 1, and 3 mg/kg) was administered to both CB1-knockout and wild type mice. Untreated CB1-knockout mice showed a reduced exploration of the open arms of the plus-maze apparatus, thus appearing more anxious than the wild-type animals, however no changes in locomotion were noticed. The vehicle-injected CB1-knockout mice from the second experiment also showed increased anxiety as compared with wild types. Surprisingly, the cannabinoid antagonist SR141716A reduced anxiety in both wild type and CB1 knockout mice. Locomotor behaviour was only marginally affected. Recent evidence suggests the existence of a novel cannabinoid receptor in the brain. It has also been shown that SR141716A binds to both the CB1 and the putative novel receptor. The data presented here supports these findings, as the cannabinoid receptor antagonist affected anxiety in both wild type and CB1-knockout mice.

Tentatively, it may be suggested that the discrepancy between the effects of the genetic and pharmacological blockade of the CB1 receptor suggests that the novel receptor plays a role in anxiety.”

http://www.ncbi.nlm.nih.gov/pubmed/12405999

Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions associated with alterations in GABA(A) receptors.

“The aim of this study was to explore the effects of CB(2) receptor agonist and antagonist in the regulation of anxiety-like behaviours…The opposing behavioural and molecular changes observed after chronic treatment… support the key role of CB(2) receptors in the regulation of anxiety. Indeed, the efficacy in reducing the anxiety of the spontaneously anxious strain of mice strengthens the potential of the CB(2) receptor as a new target in the treatment of anxiety-related disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21838753

Cannabinoid effects on anxiety-related behaviours and hypothalamic neurotransmitters.

“The aim of the present study was to examine the effects of the cannabinoid agonist CP 55,940 and the antagonist SR 141716A, alone and in combination, on rat exploratory and anxiety-like behaviour in the holeboard and elevated plus-maze tests. A further aim was to evaluate the effects of these treatments on hypothalamic neurotransmitters. Animals treated with CP 55,940 doses of 0.125 and 0.1 mg/kg exhibited less exploration and an increase in anxiety-like behaviour accompanied by great motor inhibition. No hypoactivity was seen at 0.075 mg/kg dosage, but anxiety and neophobic responses persisted, indicating independent and specific effects. Motor activity effects induced by CP 55,940 were reversed by pretreatment with SR 141716A (3 mg/kg). Surprisingly, when administered on its own, the antagonist also induced a reduction in exploratory parameters and an increase in anxiety-like responses. These apparently similar effects might be caused by different neural mechanisms. Finally, CP 55,940 increased hypothalamic dopamine and serotonin levels. These increases might be involved in the activation of the hypothalamic-pituitary-adrenal axis described for cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/11566149

Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression.

“Both agonists (e.g. Delta(9)-tetrahydrocannabinol, nabilone) and antagonists (e.g. rimonabant, taranabant) of the cannabinoid type-1 (CB(1)) receptor have been explored as therapeutic agents in diverse fields of medicine such as pain management and obesity with associated metabolic dysregulation, respectively. CB(1) receptors are widely distributed in the central nervous system and are involved in the modulation of emotion, stress and habituation responses, behaviours that are thought to be dysregulated in human psychiatric disorders. Accordingly, CB(1) receptor activation may, in some cases, precipitate episodes of psychosis and panic, while its inhibition may lead to behaviours reminiscent of depression and anxiety-related disorders. The present review discusses these side-effects, which have to be taken into account in the therapeutic exploitation of the endocannabinoid system.”

http://www.ncbi.nlm.nih.gov/pubmed/19285266

CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents.

“Cannabinoids are known to modulate GABAergic and glutamatergic transmission in cortical areas, the former via CB1 and the latter via a novel receptor. Pharmacological data demonstrate that several widely used cannabinoid ligands bind to both receptors, which may explain the inconsistencies in their behavioural effects. 

 In the present experiments, we studied the effects of the CB1 antagonist… and the cannabinoid agonist… in wild-type as well as in CB1 knockout mice… In wild types, the cannabinoid agonist… caused a decrease in anxiety-like behaviour, which was abolished by the CB1-selective antagonist…

 Our studies on the behavioural effects of the cannabinoid antagonist SR-141716A and the CB1 antagonist AM-251 show that the CB1 and the novel cannabinoid receptor mediate anxiolytic (anti-anxiety) and anxiogenic (anxiety) effects, respectively.

This suggests that agonists of the former, or antagonists of the latter, are promising new compounds in the pharmacotherapy of anxiety.”

http://www.ncbi.nlm.nih.gov/pubmed/15252281