Cannabis and endocannabinoid modulators: Therapeutic promises and challenges

Abstract

  “The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control.”

Summary

“The discovery of an endocannabinoid signaling system has opened new possibilities for research into understanding the mechanisms of marijuana actions, the role of the endocannabinoid system in homeostasis, and the development of treatment approaches based either on the phytocannabinoids or novel molecules. CB1 agonists may have roles in the treatment of neuropathic pain, spasticity, nausea and emesis, cachexia, and potentially neuroprotection after stroke or head injury. Agonists and antagonists of peripheral CB receptors may be useful in the treatment of inflammatory and autoimmune disorders, as well as hypertension and other cardiovascular diseases. CB1 antagonists may find utility in management of obesity and drug craving. Other novel agents that may not be active at CB receptor sites, but might otherwise modify cannabinoid transport or metabolism, may also have a role in therapeutic modification of the endocannabinoid system. While the short and long term toxicities of the newer compounds are not known, one must expect that at least some of the acute effects (psychotropic effects; hypotension) may be shared by CB agonists. While there are few, long-term serious toxicities attributable to marijuana, extrapolation to newer and more potent agonists, antagonists, and cannabinoid system modulators cannot be assumed. CB1 agonists have the potential in animal models to produce drug preference and drug seeking behaviors as well as tolerance and abstinence phenomena similar to, though not generally as severe as those of other drugs of addiction. There is increasing evidence from human observations that withdrawal from the phytocannabinoids can produce an abstinence syndrome characterized primarily by irritability, sleep disturbance, mood disturbance, and appetite disturbance in chronic heavy users, therefore, such possible effects will need to be considered in the evaluation of newer shorter acting and more potent agonists.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2544377/

Activation of peripheral cannabinoid CB1 and CB2 receptors suppresses the maintenance of inflammatory nociception: a comparative analysis

“Effects of locally administered agonists and antagonists for cannabinoid CB1 and CB2 receptors on mechanical and thermal hypersensitivity were compared after the establishment of chronic inflammation.”

“Cannabinoids act locally through distinct CB1 and CB2 mechanisms to suppress mechanical hypersensitivity after the establishment of chronic inflammation, at doses that produced modest changes in thermal hyperalgesia. Additive antihyperalgesic effects were observed following prophylactic co-administration of the CB1– and CB2-selective agonists. Our results suggest that peripheral cannabinoid antihyperalgesic actions may be exploited for treatment of inflammatory pain states.”

“In summary, our results demonstrate that selective activation of CB1 or CB2 receptors in the inflamed paw is sufficient to suppress tactile allodynia and mechanical hyperalgesia. This suppression is observed under conditions in which only a partial suppression of thermal hyperalgesia was observed. Collectively, our data suggest that peripheral cannabinoid analgesic mechanisms may be exploited to suppress the tactile hypersensitivity observed in chronic inflammatory pain states.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2042894/

Involvement of the endogenous cannabinoid system in the effects of alcohol in the mesolimbic reward circuit: electrophysiological evidence in vivo.

Abstract

“RATIONALE:

Several lines of evidence indicate that the endogenous cannabinoid system is involved in the pharmacological and behavioural effects of alcohol. The mesolimbic dopaminergic (DA) system and the nucleus accumbens (NAc) process rewarding properties of drugs of abuse, including alcohol and cannabinoids, whereas endocannabinoids in these regions modulate synaptic function and mediate short- and long-term forms of synaptic plasticity.

OBJECTIVES:

The present study was designed to investigate the contribution of the endogenous cannabinoid system in alcohol electrophysiological effects in the mesolimbic reward circuit.

METHODS:

We utilized extracellular single cell recordings from ventral tegmental area (VTA) DA and NAc neurons in anesthetized rats. DA neurons were antidromically identified as projecting to the shell of NAc, whereas NAc putative medium spiny neurons were identified by their evoked responses to basolateral amygdala (BLA) stimulation.

RESULTS:

Alcohol stimulated firing rate of VTA DA neurons and inhibited BLA-evoked NAc neuron spiking responses. The cannabinoid type-1 receptor (CB1) antagonist rimonabant (SR141716A) fully antagonized alcohol effect in both regions. In the NAc, either inhibition of the major catabolic enzyme of the endocannabinoid anandamide, the fatty-acid amyd hydrolase, with URB597 or a pretreatment with the CB1 receptor agonist WIN55212-2 significantly depressed alcohol-induced effects in the NAc.

CONCLUSIONS:

These results corroborate the notion of the involvement of endocannabinoids and their receptors in the actions of alcohol and highlight the endocannabinoid system as a valuable target in the therapy for alcoholism.”

http://www.ncbi.nlm.nih.gov/pubmed/16228194

Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans.

Abstract

“We tested if cannabinoid type 2 receptor (CB2) in the central nervous system plays a role in alcohol abuse/dependence in animal model and then examined an association between the CB2 gene polymorphism and alcoholism in human. Mice experiencing more alcohol preference by drinking showed reduced Cb2 gene expression, whereas mice with little preference showed no changes of it in ventral midbrain. Alcohol preference in conjunction with chronic mild stress were enhanced in mice treated with CB2 agonist JWH015 when subjected to chronic stress, whereas antagonist AM630 prevented development of alcohol preference. There is an association between the Q63R polymorphism of the CB2 gene and alcoholism in a Japanese population (P=0.007; odds ratio 1.25, 95% CI, (1.06-1.47)). CB2 under such environment is associated with the physiologic effects of alcohol and CB2 antagonists may have potential as therapies for alcoholism.”

http://www.ncbi.nlm.nih.gov/pubmed/17189959

Blockade of the cannabinoid CB1 receptor and alcohol dependence: preclinical evidence and preliminary clinical data.

Abstract

“The present paper summarizes the results of a number of pharmacological studies implicating the cannabinoid CB(1) receptor in the neural circuitry regulating different alcohol-related behaviors in rodents. Specifically, cannabinoid CB(1) receptor antagonists–including the prototype, rimonabant–have been reported to suppress: (a) acquisition and maintenance of alcohol drinking behavior under the 2-bottle “alcohol vs water” choice regimen; (b) the increase in alcohol intake occurring after a period of alcohol abstinence (an experimental model of alcohol relapse); (c) alcohol’s reinforcing and motivational properties measured in rats trained to perform a specific task (e.g., lever-pressing) to access alcohol; (d) reinstatement of extinguished alcohol-seeking behavior triggered in rats by a nicotine challenge or presentation of cues previously associated to alcohol availability (another model of alcohol relapse). Additional data indicate that the opioid receptor antagonists, naloxone and naltrexone, synergistically potentiate the suppressing effect of rimonabant on alcohol intake and alcohol’s motivational properties in rats. Conversely, the two clinical studies conducted to date (one in alcohol-dependent individuals and one in nontreatment-seeking heavy alcohol drinkers) yielded less conclusive results. Unfortunately, the recent discontinuation–due to the occurrence of some psychiatric adverse effects–of all trials with cannabinoid CB(1) receptor antagonists apparently hinders further investigations on the potential of rimonabant in the treatment of alcohol dependence.”

http://www.ncbi.nlm.nih.gov/pubmed/20201816

Cannabinoid receptor 1 blocker rimonabant (SR 141716) for treatment of alcohol dependence: results from a placebo-controlled, double-blind trial.

Abstract

“Multiple lines of evidence suggest that the endocannabinoid system is implicated in the development of alcohol dependence. In addition, in animal models, the cannabinoid receptor 1 blocker rimonabant was found to decrease alcohol consumption, possibly by indirect modulation of dopaminergic neurotransmission. This was a 12-week double-blind, placebo-controlled, proof-of-concept study to assess the possible efficacy of the cannabinoid receptor 1 antagonist rimonabant 20 mg/d (2 x 10 mg) in the prevention of relapse to alcohol in recently detoxified alcohol-dependent patients. A total of 260 patients were included, 258 were exposed to medication, and 208 (80.6%) were men. Patients had an alcohol history of 15 years on average. More patients in the rimonabant group (94/131 [71.8%]) completed treatment compared with the placebo group (79/127 [62.2%]). Although there was a modest effect of rimonabant with respect to relapse rate, there were no statistically significant differences between treatment groups. Approximately 41.5% of the rimonabant group had relapsed to drinking at the end of the study compared with 47.7% of the placebo group (obtained from Kaplan-Meier-curve). Differences were more marked but not statistically significant in patients who relapsed to heavy drinking: 27.7% versus 35.6%, respectively. Safety and tolerance of the drug were good. Similar rates of adverse events were reported between the 2 groups; less patients experienced serious events or discontinued the treatment with rimonabant compared with placebo. Rates of depression-related events were low (3.8% with rimonabant compared with 1.6% with placebo). Patients on rimonabant lost weight (Mean, -1.7 kg) compared with baseline, whereas there was no such change in the placebo group. Weight loss was more pronounced in patients with a higher body mass index. In addition, there was a significant decrease in leptin levels in the rimonabant group compared with baseline. Lack of efficacy in this study may be explained by a very high response rate in the placebo group and a relatively short treatment duration. Taking the substantial numbers of animal studies suggesting a possible role of CB1 antagonists for the treatment of alcohol dependence into account, it seems worthwhile to further test cannabinoid blockers in the treatment of alcoholism.”

http://www.ncbi.nlm.nih.gov/pubmed/18480689

A Critical Role for the Cannabinoid CB1 Receptors in Alcohol Dependence and Stress-Stimulated Ethanol Drinking

“Although many people drink alcohol regularly, only some become addicted. Several studies have shown that genetic and environmental factors contribute to individual differences in the vulnerability to the effects of alcohol. Among the environmental factors, stress is perhaps the most important trigger for relapse after a period of abstinence. Here we show that ethanol withdrawal symptoms were completely absent in cannabinoid CB1 receptor-deficient mice, although acute effects of ethanol and ethanol tolerance and preference were basically normal. Furthermore, foot-shock stress had no affect on alcohol preference in Cnr1−/− mice, although it induced a dramatic increase in Cnr1+/+ animals. These results reveal a critical role for the CB1 receptor in clinically important aspects of alcohol dependence and provide a rationale for the use of CB1 receptor antagonists in the treatment of alcohol addiction.”

“In summary, the endocannabinoid system does not seem to be crucial for the rewarding effects of ethanol and the manifestation of normal ethanol drinking behaviors. However, it appears to play an important role in the manifestation of stress-induced alcohol drinking and ethanol withdrawal. These results support the notion that the neuronal mechanisms involved in drug reinforcement are dissociable from those involved in withdrawal and reinstatement. Indeed, our results demonstrate that ethanol tolerance and physical dependence can be separated. Thus, CB1 receptor antagonists may be useful for the treatment of alcohol addiction.”

http://www.jneurosci.org/content/23/6/2453.long

[The role of the cannabinoid system in the pathogenesis and treatment of alcohol dependence].

Abstract

“The lack of satisfactory results of alcohol dependence treatment force us to search for new directions of research. Recent studies concentrate on endocannabinoid transmission. The results show an interplay between the endocannabinoid and dopaminergic signaling in activation of the limbic reward system. The mechanisms leading to development of dependence are very complex and poorly recognized. Endogenous cannabinoids seem to have an important role in the functioning of this system, both directly and indirectly affecting the level of different neurotransmitters. The effect of alcohol on the endocannabinoid system is also complex and involves changes at the molecular level. Experimental studies have demonstrated an important role of the CB1 receptors in the neurochemical mechanism of alcohol consumption and its regulation. SR141716 (rimonabant), a CB1 receptor antagonist, significantly lowers voluntary alcohol intake and motivation for its consumption in various experimental studies. Very encouraging results of preclinical studies were not completely confirmed in the clinical studies. However, further clinical studies are still necessary.”

http://www.ncbi.nlm.nih.gov/pubmed/21934185

Endocannabinoid system and alcohol addiction: pharmacological studies.

Abstract

“The present paper describes the results of recent pharmacological studies implicating the cannabinoid CB1 receptor in the neural circuitry regulating alcohol consumption and motivation to consume alcohol. Cannabinoid CB1 receptor agonists have been found to specifically stimulate alcohol intake and alcohol’s motivational properties in rats. Conversely, the cannabinoid CB1 receptor antagonist, SR 141716, has been reported to specifically suppress acquisition and maintenance of alcohol drinking behavior, relapse-like drinking and alcohol’s motivational properties in rats. More recent data indicate that opioid receptor antagonists a) blocked the stimulatory effect of cannabinoids on alcohol intake, and b) synergistically potentiated the suppressing effect of SR 141716 on alcohol intake and alcohol’s motivational properties. Consistently, SR 141716 blocked the stimulatory effect of morphine on alcohol intake. These results suggest a) the existence of a functional link between the cannabinoid and opioid receptor systems in the control of alcohol intake and motivation to consume alcohol, and b) that novel and potentially effective therapeutic strategies for alcoholism may come from the combination of cannabinoid and opioid receptor antagonists.”

http://www.ncbi.nlm.nih.gov/pubmed/15939463

Neuromodulatory role of the endocannabinoid signaling system in alcoholism: an overview.

Abstract

“The current review evaluates the evidence that some of the pharmacological and behavioral effects of ethanol (EtOH), including EtOH-preferring behavior, may be mediated through the endocannabinoid signaling system. The recent advances in the understanding of the neurobiological basis of alcoholism suggest that the pharmacological and behavioral effects of EtOH are mediated through its action on neuronal signal transduction pathways and ligand-gated ion channels, receptor systems, and receptors that are coupled to G-proteins. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB1 receptor) that was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. To date, two fatty acid derivatives identified to be arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) have been isolated from both nervous and peripheral tissues. Both these compounds have been shown to mimic the pharmacological and behavioral effects of Delta(9)-THC. The involvement of the endocannabinoid signaling system in the development of tolerance to the drugs of abuse including EtOH has not been known until recently. Recent studies from our laboratory have demonstrated for the first time the down-regulation of CB1 receptor function and its signal transduction by chronic EtOH. The observed down-regulation of CB1 receptor binding and its signal transduction results from the persistent stimulation of the receptors by the endogenous CB1 receptor agonists, AEA and 2-AG, the synthesis of which has been found to be increased by chronic EtOH treatment. This enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid EtOH intake, have significantly reduced brain-CB1-receptor function consistent with other studies, where the CB1 receptor antagonist SR141716A has been shown to block voluntary EtOH intake in rodents. Similarly, activation of the CB1 receptor system promoted alcohol craving, suggesting a role for the CB1 receptor gene in excessive EtOH drinking behavior and development of alcoholism. Ongoing investigations may lead to the development of potential therapeutic strategies for the treatment of alcoholism.”

http://www.ncbi.nlm.nih.gov/pubmed/12052043