Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renal fibrosis.

Kidney International Home

“The cannabinoid receptor type 2 (CB2) is a G protein-coupled seven transmembrane receptor that transmits endogenous cannabinoid signaling. The role of CB2 in the pathogenesis of kidney injury and fibrosis remains poorly understood.

Here we demonstrate that CB2 was induced, predominantly in kidney tubular epithelium, in various models of kidney disease induced by unilateral ureteral obstruction, adriamycin or ischemia/reperfusion injury.

By using in silico screening and medicinal chemistry modifications, we discovered a novel compound, XL-001, that bound to CB2 with high affinity and selectivity and acted as an inverse agonist. Delayed administration of XL-001 was also effective in ameliorating kidney fibrosis and inflammation.

Thus, CB2 is a pathogenic mediator in kidney fibrosis and targeted inhibition with the novel inverse agonist XL-001 may provide a strategy in the fight against fibrotic kidney diseases.”

Chronic treatment with the phytocannabinoid Cannabidivarin (CBDV) rescues behavioural alterations and brain atrophy in a mouse model of Rett syndrome.

Neuropharmacology

“Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. RTT is caused by mutations in the MECP2 gene in about 95% of cases and to date no cure is available.

The endocannabinoid system modulates several physiological processes and behavioural responses that are impaired in RTT and its deregulation has been associated with neuropsychiatric disorders which have symptoms in common with RTT.

The present study evaluated the potential therapeutic efficacy for RTT of cannabidivarin (CBDV), a non-psychotropic phytocannabinoid from Cannabis sativa that presents antagonistic properties on the G protein-coupled receptor 55 (GPR55), the most recently identified cannabinoid receptor.

Present results demonstrate that systemic treatment with CBDV (2, 20, 100 mg/Kg ip for 14 days) rescues behavioural and brain alterations in MeCP2-308 male mice, a validated RTT model. The CBDV treatment restored the compromised general health status, the sociability and the brain weight in RTT mice. A partial restoration of motor coordination was also observed. Moreover, increased levels of GPR55 were found in RTT mouse hippocampus, suggesting this G protein-coupled receptor as new potential target for the treatment of this disorder.

Present findings highlight for the first time for RTT the translational relevance of CBDV, an innovative therapeutic agent that is under active investigation in the clinical setting.”

Cannabinoids, the Heart of the Matter

Image result for jaha journal

“Cardiovascular disease (CVD) is a global epidemic representing the leading cause of death in some Western countries. Endocannabinoids and cannabinoid‐related compounds may be a promising approach as therapeutic agents for cardiovascular diseases. This review highlights the potential of cannabinoids and their receptors as targets for intervention.

In summary, the endocannabinoid system is highly active in cardiovascular disease states. Modulation of the ECS, CB1, and TRPV1 antagonism, as well as CB2 agonism, have proven to modulate disease state and severity in CVD. Studies are underway to develop drugs to change the course of cardiovascular diseases.

If therapeutic potential resides in a single molecule component or a derivative, then production and regulation of the therapy are straightforward. If the efficacious agent is a complex mixture that reflects some or all of the secondary metabolome complexity of Cannabis sativa, then safe and consistent production become challenging.”  http://jaha.ahajournals.org/content/7/14/e009099https://www.ncbi.nlm.nih.gov/pubmed/30006489

Assessment of Cannabinoids Agonist and Antagonist in Invasion Potential of K562 Cancer Cells

Image result for iran biomed journal

“The prominent hallmark of malignancies is the metastatic spread of cancer cells. Recent studies have reported that the nature of invasive cells could be changed after this phenomenon, causing chemotherapy resistance.

It has been demonstrated that the up-regulated expression of matrix metalloproteinase (MMP) 2/MMP-9, as a metastasis biomarker, can fortify the metastatic potential of leukemia.

Furthermore, investigations have confirmed the inhibitory effect of cannabinoid and endocannabinoid on the proliferation of cancer cells in vitro and in vivo.

Our findings clarifies that CB1 receptors are responsible for anti-invasive effects in the K562 cell line.”

https://www.ncbi.nlm.nih.gov/pubmed/29883990

Endocannabinoids in Body Weight Control.

pharmaceuticals-logo

“Maintenance of body weight is fundamental to maintain one’s health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing.

Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis.

Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects.

At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism.

Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands.

To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/29849009

http://www.mdpi.com/1424-8247/11/2/55

Mechanistic Potential and Therapeutic Implications of Cannabinoids in Nonalcoholic Fatty Liver Disease.

medicines-logo

“Nonalcoholic fatty liver disease (NAFLD) is comprised of nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). It is defined by histologic or radiographic evidence of steatosis in the absence of alternative etiologies, including significant alcohol consumption, steatogenic medication use, or hereditary disorders.

NAFLD is now the most common liver disease, and when NASH is present it can progress to fibrosis and hepatocellular carcinoma. Different mechanisms have been identified as contributors to the physiology of NAFLD; insulin resistance and related metabolic derangements have been the hallmark of physiology associated with NAFLD.

The mainstay of treatment has classically involved lifestyle modifications focused on the reduction of insulin resistance. However, emerging evidence suggests that the endocannabinoid system and its associated cannabinoid receptors and ligands have mechanistic and therapeutic implications in metabolic derangements and specifically in NAFLD.

Cannabinoid receptor 1 antagonism has demonstrated promising effects with increased resistance to hepatic steatosis, reversal of hepatic steatosis, and improvements in glycemic control, insulin resistance, and dyslipidemia. Literature regarding the role of cannabinoid receptor 2 in NAFLD is controversial.

Exocannabinoids and endocannabinoids have demonstrated some therapeutic impact on metabolic derangements associated with NAFLD, although literature regarding direct therapeutic use in NAFLD is limited. Nonetheless, the properties of the endocannabinoid system, its receptors, substrates, and ligands remain a significant arena warranting further research, with potential for a pharmacologic intervention for a disease with an anticipated increase in economic and clinical burden.”

https://www.ncbi.nlm.nih.gov/pubmed/29843404

http://www.mdpi.com/2305-6320/5/2/47

Computational investigation on the binding modes of Rimonabant analogues with CB1 and CB2.

Publication cover image

“The human cannabinoid G protein coupled receptor 1 (CB1) is highly expressed in central nervous system. CB1-selective antagonists show therapeutic promise in a wide range of disorders, such as obesity-related metabolic disorders, dyslipidemia, drug abuse and type 2 diabetes.

Rimonabant (SR141716A), MJ08 and MJ15 are selective CB1 antagonists with selectivity >1000 folds over CB2 despite of 42% sequence identity between CB1 and CB2. The integration of homology modeling, automated molecular docking and molecular dynamics simulation were used to investigate the binding modes of these selective inverse agonists/antagonists with CB1 and CB2 and their selectivity.

Our analyses showed that the hydrophobic interactions between ligands and hydrophobic pockets of CB1 account for the main binding affinity. In addition, instead of interacting with ligands directly as previously reported, the Lys1923.28in CB1 was engaged in indirect interactions with ligands to keep inactive-state CB1 stable by forming the salt bridge with Asp1762.63 . Lastly, our analyses indicated that the selectivity of these antagonists came from the difference in geometry shapes of binding pockets of CB1 and CB2.

The present study could guide future experimental works on these receptors and has the guiding significance for the design of functionally selective drugs targeting CB1 or CB2 receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/29797785

https://onlinelibrary.wiley.com/doi/abs/10.1111/cbdd.13337

Endocannabinoid system and pathophysiology of adipogenesis: current management of obesity.

“The endocannabinoids are now known as novel and important regulators of energy metabolism and homeostasis.

The endocrine functions of white adipose are chiefly involved in the control of whole-body metabolism, insulin sensitivity and food intake. Adipocytes produce hormones, such as leptin and adiponectin, that can improve insulin resistance or peptides, such as TNF-α, that elicit insulin resistance. Adipocytes express specific receptors, such as peroxisome proliferator-activated receptor (PPAR)-γ, which serve as adipocyte targets for insulin sensitizers such as thiazolidinediones.

Recently, endocannabinoids and related compounds were identified in human fat cells.

The endocannabinoid system consists primarily of two receptors, cannabinoid (CB)1 and CB2, their endogenous ligands termed endocannabinoids and the enzymes responsible for ligand biosynthesis and degradation.

The endocannabinoids 2-arachidonylglycerol and anandamide or N-arachidonoylethanolamine increase food intake and promote weight gain in animals. Rimonabant, a selective CB1 blocker, reduces food intake and body weight in animals and humans.”

Synthesis of 13 C6 -labeled, dual-target inhibitor of Cannabinoid-1 receptor (CB1 R) and inducible nitric oxide synthase (iNOS).

Publication cover image

“Cannabinoid-1 receptor (CB1 R) antagonists/inverse agonists have great potential in the treatment of metabolic disorders like dyslipidemia, type 2 diabetes and non-alcoholic steatohepatitis (NASH).

CB1 R inverse agonists have also been reported to be effective in mitigating fibrotic disorders in murine models.

Inducible nitric oxide synthase is another promising target implicated in fibrotic and inflammatory disorders.

We have disclosed MRI-1867 as a potent and selective, peripherally acting dual-target inhibitor of the cannabinoid receptor (CB1 R) and inducible nitric oxide synthase (iNOS).

Herein, we report the synthesis of [13 C6 ]-MRI-1867 as a racemate from commercially available chlorobenzene-13 C6 as the starting, stable-isotope label reagent. The racemic [13 C6 ]-MRI-1867 was further processed to the stable-isotope labeled enantiopure compounds utilizing chiral chromatography. Both racemic [13 C6]-MRI-1867 and S-13 C6 -MRI-1867 will be used to quantitate unlabeled S-MRI-1867 during clinical DMPK studies and will be used as an LC-MS/MS bioanalytical standard.”

https://www.ncbi.nlm.nih.gov/pubmed/29790591

https://onlinelibrary.wiley.com/doi/abs/10.1002/jlcr.3639

Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview.

Image result for cambridge university press

“Cannabidiol (CBD) represents a new promising drug due to a wide spectrum of pharmacological actions. In order to relate CBD clinical efficacy to its pharmacological mechanisms of action, we performed a bibliographic search on PUBMED about all clinical studies investigating the use of CBD as a treatment of psychiatric symptoms.

Findings to date suggest that (a) CBD may exert antipsychotic effects in schizophrenia mainly through facilitation of endocannabinoid signalling and cannabinoid receptor type 1 antagonism; (b) CBD administration may exhibit acute anxiolytic effects in patients with generalised social anxiety disorder through modification of cerebral blood flow in specific brain sites and serotonin 1A receptor agonism; (c) CBD may reduce withdrawal symptoms and cannabis/tobacco dependence through modulation of endocannabinoid, serotoninergic and glutamatergic systems; (d) the preclinical pro-cognitive effects of CBD still lack significant results in psychiatric disorders.

In conclusion, current evidences suggest that CBD has the ability to reduce psychotic, anxiety and withdrawal symptoms by means of several hypothesised pharmacological properties. However, further studies should include larger randomised controlled samples and investigate the impact of CBD on biological measures in order to correlate CBD’s clinical effects to potential modifications of neurotransmitters signalling and structural and functional cerebral changes.”

https://www.ncbi.nlm.nih.gov/pubmed/29789034

https://www.cambridge.org/core/journals/epidemiology-and-psychiatric-sciences/article/pharmacological-properties-of-cannabidiol-in-the-treatment-of-psychiatric-disorders-a-critical-overview/D7FD68F40CF30CBB48A1025C66873F26