Antitumorigenic Effects of Cannabinoids beyond Apoptosis

“According to the World Health Organization, the cases of death caused by cancer will have been doubled until the year 2030. By 2010, cancer is expected to be the number one cause of death. Therefore, it is necessary to explore novel approaches for the treatment of cancer. Over past years, the antitumorigenic effects of cannabinoids have emerged as an exciting field in cancer research. Apart from their proapoptotic and antiproliferative action, recent research has shown that cannabinoids may likewise affect tumor cell angiogenesis, migration, invasion, adhesion, and metastasization. This review will summarize the data concerning the influence of cannabinoids on these locomotive processes beyond modulation of cancer cell apoptosis and proliferation. The findings discussed here provide a new perspective on the antitumorigenic potential of cannabinoids.

Conclusion

Recent investigations have shown that besides its well known antiapoptotic and antiproliferative action, cannabinoids may also confer antiangiogenic, antimigrative, antiadhesive, anti-invasive, and antimetastatic properties by pathways including activation of both cannabinoid receptors as well as TRPV1. Although a limited number of studies have been published addressing the underlying mechanisms, the currently available results indicate that the modulation of several components of signal transduction pathways, including Src, nuclear factor κB, ERK1/2, HIF-1α, Akt, and modulation of the expression as well as that of the enzymatic action of proteins of the MMP family, EGF, VEGF, IgSF CAMs, and FAK, by cannabinoids might support beneficial effects on tumor cell locomotion and spreading. Based on these facts, evidence is emerging to suggest that cannabinoids are potent inhibitors of both cancer growth and spreading. Because cannabinoids are usually well tolerated and do not develop the toxic effects of conventional chemotherapeutics, more preclinical studies are warranted to investigate a potential utility of these substances as anticancer therapeutics.”

http://jpet.aspetjournals.org/content/332/2/336.long

Anandamide inhibits the Wnt/β-catenin signalling pathway in human breast cancer MDA MB 231 cells.

“We previously showed that methyl-F-anandamide, a stable analogue of the anandamide, inhibited the growth and the progression of cultured human breast cancer cells. As accumulating evidences indicate that the constitutive activation of the canonical Wnt pathway in human breast cancer may highlight a key role for aberrant activation of the β-catenin-TCF cascade and tumour progression, we studied the anandamide effect on the key elements of Wnt pathway in breast cancer cells. In this study we described that the treatment of human breast cancer cells, MDA MB 231 cells, with methyl-F-anandamide reduced protein levels of β-catenin in the cytoplasmic and nuclear fractions inhibiting the transcriptional activation of T Cell Factor (TCF) responsive element (marker for β-catenin signalling). The anandamide treatment resulted in up-regulation of epithelial markers, like E-cadherin with a concomitant decrease in protein levels of mesenchymal markers, including vimentin and Snail1. We, furthermore, observed that the induction of experimental epithelial-mesenchymal transition by exposure to adriamycin in MCF7 human breast cancer cell line was inhibited by anandamide treatment. In the present study we reported a novel anticancer effect of anandamide involving the inhibition of epithelial-mesenchymal transition, a process triggered during progression of cancer to invasive state.”

http://www.ncbi.nlm.nih.gov/pubmed/22425263

Cannabinoids in the treatment of cancer.

“Cannabinoids, the active components of the hemp plant Cannabis sativa, along with their endogenous counterparts and synthetic derivatives, have elicited anti-cancer effects in many different in vitro and in vivo models of cancer. While the various cannabinoids have been examined in a variety of cancer models, recent studies have focused on the role of cannabinoid receptor agonists (both CB(1) and CB(2)) in the treatment of estrogen receptor-negative breast cancer. This review will summarize the anti-cancer properties of the cannabinoids, discuss their potential mechanisms of action, as well as explore controversies surrounding the results.”

http://www.ncbi.nlm.nih.gov/pubmed/19442435

Cannabis Science Publishes List of Over 800 Peer-Reviewed Cannabis and Cancer References From Scientists Around the World

“This list of peer-reviewed manuscripts, provides support for the anecdotal observations of an increasing number of patients claiming successful cancer treatment using medical cannabis extracts.”

“The scientific documentation of the anti-cancer and anti-metastatic properties of cannabinoids is a driving force behind behind our long-term goal, to make high quality, effective, reliable and safe cannabis extracts available to the public beyond the borders of current medical marijuana states.”

http://www.drugs.com/clinical_trials/cannabis-science-publishes-list-over-800-peer-reviewed-cannabis-cancer-references-scientists-around-12716.html

https://www.cannabisscience.com/index.php/news-media/news-archive/215-cannabis-science-publishes-list-of-over-800-peer-reviewed-cannabis-and-cancer-references-from-scientists-around-the-world