Opioids/cannabinoids as a potential therapeutic approach in COVID-19 patients

Publication Cover“So far, no vaccine has been successfully developed and there is no effective treatment of COVID-19.

Since intensive inflammation leads to disease-induced morbidity and mortality, inhibition of the hyperinflammatory response is a definitive drug therapy objective.

Certainly, there is an urgent need for a substance that can potentially counter the effects of the virus and alleviate the symptoms and severity of the disease.

Could opioids/cannabinoids be an effective treatment for COVID-19?

Since opioids/cannabinoids receptors-based drugs can modulate immune cell migration and cytokine/chemokine secretion, they represent a promising pharmacological platform for developing anti-inflammatory therapeutics.

Therefore in the absence of effective treatments to decrease the damage associated with COVID-19 especially in those admitted to the ICU and suffer from exaggerated inflammatory response, opioids/cannabinoids receptor agonists might potentially open up an effective therapeutic approach in COVID-19 infection.

It is interesting to remember that physicians in the late 19th century used anodynes of opium tincture as a treatment of ‘bronchitis’ and other ailments in infants and children, as case reports and experience ‘demonstrated the efficacy’ of the concoction in controlling coughing and facilitating breathing.

Also, today some products of cannabinoids are used to modulate an inflammatory response. This permits us to rediscover the past and utilize the present, with hopes of finding the missing links in the pathophysiology of COVID-19, and raises the issue of opioids/cannabinoids utilization in the context of COVID-19.

It is suggested that clinical trials could be conducted on opioids/cannabinoids products with immunomodulatory activity. We hope that, with great efforts, scientific support, and sharing of information, the overcoming of COVID-19 will come soon.”

https://www.tandfonline.com/doi/full/10.1080/17476348.2020.1787836

Long Term Delta-9-tetrahydrocannabinol Administration Inhibits Proinflammatory Responses in Minor Salivary Glands of Chronically Simian Immunodeficieny Virus Infected Rhesus Macaques

 viruses-logo“HIV/SIV-associated oral mucosal disease/dysfunction (HAOMD) (gingivitis/periodontitis/salivary adenitis) represents a major comorbidity affecting HIV patients on anti-retroviral therapy.

Using a systems biology approach, we investigated molecular changes (mRNA/microRNA) underlying HAOMD and its modulation by phytocannabinoids (delta-9-tetrahydrocannabinol (∆9-THC)) in uninfected (n = 5) and SIV-infected rhesus macaques untreated (VEH-untreated/SIV; n = 7) or treated with vehicle (VEH/SIV; n = 3) or ∆9-THC (THC/SIV; n = 3).

Relative to controls, fewer mRNAs were upregulated in THC/SIV compared to VEH-untreated/SIV macaques. Gene enrichment analysis showed differential enrichment of biological functions involved in anti-viral defense, Type-I interferon, Toll-like receptor, RIG-1 and IL1R signaling in VEH-untreated/SIV macaques. We focused on the anti-ER-stress anterior gradient-2 (AGR2), epithelial barrier protecting and anti-dysbiotic WAP Four-Disulfide Core Domain-2 (WFDC2) and glucocorticoid-induced anti-inflammatory TSC22D3 (TSC22-domain family member-3) that were significantly downregulated in oropharyngeal mucosa (OPM) of VEH-untreated/SIV macaques.

All three proteins localized to minor salivary gland acini and secretory ducts and showed enhanced and reduced expression in OPM of THC/SIV and VEH/SIV macaques, respectively. Additionally, inflammation associated miR-21, miR-142-3p and miR-29b showed significantly higher expression in OPM of VEH-untreated/SIV macaques. TSC22D3 was validated as a target of miR-29b.

These preliminary translational findings suggest that phytocannabinoids may safely and effectively reduce oral inflammatory responses in HIV/SIV and other (autoimmune) diseases.”

https://pubmed.ncbi.nlm.nih.gov/32630206/

https://www.mdpi.com/1999-4915/12/7/713

Receptor Mechanisms Mediating the Anti-Neuroinflammatory Effects of Endocannabinoid System Modulation in a Rat Model of Migraine

European Jnl of Neuroscience – Applications sur Google Play

“Calcitonin gene-related peptide (CGRP), substance-P and dural mast cells are main contributors in neurogenic inflammation underlying migraine pathophysiology.

Modulation of endocannabinoid system attenuates migraine pain, but its mechanisms of action remains unclear.

We investigated receptor mechanisms mediating anti-neuroinflammatory effects of endocannabinoid system modulation in in-vivo migraine model and ex-vivo hemiskull preparations in rats.

Selective ligands targeting CB1 and CB2 receptors may provide novel and effective treatment strategies against migraine.”

https://pubmed.ncbi.nlm.nih.gov/32639078/

https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.14897

Cannabidiol and Sports Performance: A Narrative Review of Relevant Evidence and Recommendations for Future Research

Sports Medicine - Open Cover Image “Cannabidiol (CBD) is a non-intoxicating cannabinoid derived from Cannabis sativa. CBD initially drew scientific interest due to its anticonvulsant properties but increasing evidence of other therapeutic effects has attracted the attention of additional clinical and non-clinical populations, including athletes.

Unlike the intoxicating cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), CBD is no longer prohibited by the World Anti-Doping Agency and appears to be safe and well-tolerated in humans. It has also become readily available in many countries with the introduction of over-the-counter “nutraceutical” products.

The aim of this narrative review was to explore various physiological and psychological effects of CBD that may be relevant to the sport and/or exercise context and to identify key areas for future research. As direct studies of CBD and sports performance are is currently lacking, evidence for this narrative review was sourced from preclinical studies and a limited number of clinical trials in non-athlete populations.

Preclinical studies have observed robust anti-inflammatory, neuroprotective and analgesic effects of CBD in animal models. Preliminary preclinical evidence also suggests that CBD may protect against gastrointestinal damage associated with inflammation and promote healing of traumatic skeletal injuries. However, further research is required to confirm these observations.

Early stage clinical studies suggest that CBD may be anxiolytic in “stress-inducing” situations and in individuals with anxiety disorders. While some case reports indicate that CBD improves sleep, robust evidence is currently lacking. Cognitive function and thermoregulation appear to be unaffected by CBD while effects on food intake, metabolic function, cardiovascular function, and infection require further study.

CBD may exert a number of physiological, biochemical, and psychological effects with the potential to benefit athletes. However, well controlled, studies in athlete populations are required before definitive conclusions can be reached regarding the utility of CBD in supporting athletic performance.”

https://pubmed.ncbi.nlm.nih.gov/32632671/

“CBD has been reported to exert a number of physiological, biochemical, and psychological effects that have the potential to benefit athletes. For instance, there is preliminary supportive evidence for anti-inflammatory, neuroprotective, analgesic, and anxiolytic actions of CBD and the possibility it may protect against GI damage associated with inflammation and promote the healing of traumatic skeletal injuries.”

https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-020-00251-0

The Seed of Industrial Hemp ( Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition

nutrients-logo“Hempseeds, the edible fruits of the Cannabis sativa L. plant, were initially considered a by-product of the hemp technical fibre industry. Nowadays, following the restorationing of the cultivation of C. sativa L. plants containing an amount of delta-9-tetrahydrocannabinol (THC) <0.3% or 0.2% (industrial hemp) there is a growing interest for the hempseeds production due to their high nutritional value and functional features.

The goal of this review is to examine the scientific literature concerning the nutritional and functional properties of hempseeds. Furthermore, we revised the scientific literature regarding the potential use of hempseeds and their derivatives as a dietary supplement for the prevention and treatment of inflammatory and chronic-degenerative diseases on animal models and humans too.

In the first part of the work, we provide information regarding the genetic, biochemical, and legislative aspects of this plant that are, in our opinion essential to understand the difference between “industrial” and “drug-type” hemp. In the final part of the review, the employment of hempseeds by the food industry as livestock feed supplement and as ingredient to enrich or fortify daily foods has also revised.

Overall, this review intends to encourage further and comprehensive investigations about the adoption of hempseeds in the functional foods field.”

https://pubmed.ncbi.nlm.nih.gov/32610691/

https://www.mdpi.com/2072-6643/12/7/1935

Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity

Frontiers in Pharmacology welcomes new Field Chief Editor ...“Acute Respiratory Distress Syndrome (ARDS) is a life-threatening complication that can ensue following Staphylococcus aureus infection. The enterotoxin produced by these bacteria (SEB) acts as a superantigen thereby activating a large proportion of T cells leading to cytokine storm and severe lung injury.

Δ9Tetrahydrocannabinol (THC), a psychoactive ingredient found in Cannabis sativa, has been shown to act as a potent anti-inflammatory agent. In the current study, we investigated the effect of THC treatment on SEB-induced ARDS in mice.

While exposure to SEB resulted in acute mortality, treatment with THC led to 100% survival of mice. THC treatment significantly suppressed the inflammatory cytokines, IFN-γ and TNF-α. Additionally, THC elevated the induction of regulatory T cells (Tregs) and their associated cytokines, IL-10 and TGF-β. Moreover, THC caused induction of Myeloid-Derived Suppressor Cells (MDSCs).

THC acted through CB2 receptor as pharmacological inhibitor of CB2 receptors blocked the anti-inflammatory effects. THC-treated mice showed significant alterations in the expression of miRNA (miRs) in the lung-infiltrated mononuclear cells (MNCs). Specifically, THC caused downregulation of let7a-5p which targeted SOCS1 and downregulation of miR-34-5p which caused increased expression of FoxP3, NOS1, and CSF1R.

Together, these data suggested that THC-mediated alterations in miR expression in the lungs may play a critical role in the induction of immunosuppressive Tregs and MDSCs as well as suppression of cytokine storm leading to attenuation of SEB-mediated lung injury.”

https://pubmed.ncbi.nlm.nih.gov/32612530/

“In summary, the current study suggests that treatment of mice with THC post-SEB challenge protects mice from SEB-mediated toxicity by inhibiting inflammation and ARDS through the modulation of miRs. Because SEB is a super antigen that drives cytokine storm, our studies suggest that THC is a potent anti-inflammatory agent that has the potential to be used as a therapeutic modality to treat SEB-induced ARDS.

It is of interest to note that a significant proportion of Coronavirus disease 2019 (COVID-19) patients come down with sepsis and ARDS accompanied by cytokine storm. ”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00893/full

Use of Cannabis for Agitation in Patients With Dementia

 logo“Studies have reported changes in the endocannabinoid system in the brain of patients with Alzheimer’s disease (AD), playing a role in the pathophysiology of AD. Cannabinoids have been shown to have neuroprotective properties, reduce neuroinflammation, and enhance neurogenesis. Evidence suggests that the utilization of marijuana products containing both tetrahydrocannabinol (THC) and cannabidiol (CBD) or CBD alone have been effective and safe for use in older people with agitation associated with dementia.

A review in 2017 summarized positive findings for therapeutic benefits of cannabinoids in agitation of AD and dementia, but there was no definitive conclusion because of varying cannabinoid products. Cannabinoids were shown to be well tolerated, with few short-term side effects. This differs from first-line medications utilized for dementia behaviors, which can have unwanted side effects. Further research regarding the safety, efficacy, and variability of these products in older people is needed.”

https://pubmed.ncbi.nlm.nih.gov/32600509/

https://www.ingentaconnect.com/content/ascp/tscp/2020/00000035/00000007/art00006;jsessionid=1ivcuvrvy4g1s.x-ic-live-03

Recent Cannabis Use in HIV Is Associated With Reduced Inflammatory Markers in CSF and Blood

 Home“Objective: To determine whether cannabis may reduce HIV-related persistent inflammation, we evaluated the relationship of cannabis use in people with HIV (PWH) to inflammatory cytokines in CSF and blood plasma.

Conclusions: Recent cannabis use was associated with lower levels of inflammatory biomarkers, both in CSF and blood, but in different patterns. These results are consistent with compartmentalization of immune effects of cannabis. The principal active components of cannabis are highly lipid soluble and sequestered in brain tissue; thus, our findings are consistent with specific anti-neuroinflammatory effects that may benefit HIV neurologic dysfunction.”

https://pubmed.ncbi.nlm.nih.gov/32554630/

https://nn.neurology.org/content/7/5/e809

Non-opioid Analgesics and the Endocannabinoid System

 Balkan Medical Journal“Non-steroidal anti-inflammatory drugs (NSAIDs) are known to produce antinociceptive effects mainly through peripheral COX-inhibition. Paracetamol and dipyrone are different from classical NSAIDs, because they exert weak anti-inflammatory activity; mechanisms other than peripheral COX inhibition appear to play role in their antinociceptive actions. In this review, we specified classical NSAIDs, paracetamol and dipyrone as “non-opioid analgesics” and discussed the mechanisms mediating participation of the endocannabinoid system in the antinociceptive effects of these analgesics. Non-opioid analgesics and their metabolites may activate cannabinoid receptors. In addition, several mechanisms are implicated in the elevation of endocannabinoid levels following administration of non-opioid analgesics. Of these, reduction of endocannabinoid degradation via FAAH and/or COX-2 inhibition, accumulation of arachidonic acid to endocannabinoid biosynthesis following COX inhibition, inhibition of cellular uptake of endocannabinoids directly or following inhibition of nitric oxide synthase production, and induction of endocannabinoid release are among the proposed mechanisms.”

https://pubmed.ncbi.nlm.nih.gov/32551466/

http://balkanmedicaljournal.org/uploads/pdf/pdf_BMJ_2226.pdf

Can Physical Activity Support the Endocannabinoid System in the Preventive and Therapeutic Approach to Neurological Disorders?

ijms-logo“The worldwide prevalence of neurological and neurodegenerative disorders, such as depression or Alzheimer’s disease, has spread extensively throughout the last decades, becoming an enormous health issue.

Numerous data indicate a distinct correlation between the altered endocannabinoid signaling and different aspects of brain physiology, such as memory or neurogenesis. Moreover, the endocannabinoid system is widely regarded as a crucial factor in the development of neuropathologies. Thus, targeting those disorders via synthetic cannabinoids, as well as phytocannabinoids, becomes a widespread research issue.

Over the last decade, the endocannabinoid system has been extensively studied for its correlation with physical activity. Recent data showed that physical activity correlates with elevated endocannabinoid serum concentrations and increased cannabinoid receptor type 1 (CB1R) expression in the brain, which results in positive neurological effects including antidepressant effect, ameliorated memory, neuroplasticity development, and reduced neuroinflammation. However, none of the prior reviews presented a comprehensive correlation between physical activity, the endocannabinoid system, and neuropathologies.

Thus, our review provides a current state of knowledge of the endocannabinoid system, its action in physical activity, as well as neuropathologies and a possible correlation between all those fields. We believe that this might contribute to finding a new preventive and therapeutic approach to both neurological and neurodegenerative disorders.”

https://pubmed.ncbi.nlm.nih.gov/32545780/

https://www.mdpi.com/1422-0067/21/12/4221