Allosteric Cannabinoid Receptor 1 (CB1) Ligands Reduce Ocular Pain and Inflammation.

molecules-logo“Cannabinoid receptor 1 (CB1) activation has been reported to reduce transient receptor potential cation channel subfamily V member 1 (TRPV1)-induced inflammatory responses and is anti-nociceptive and anti-inflammatory in corneal injury.

We examined whether allosteric ligands, can modulate CB1 signaling to reduce pain and inflammation in corneal hyperalgesia.

Corneal hyperalgesia was generated by chemical cauterization of cornea in wildtype and CB2 knockout (CB2-/-) mice. The novel racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229 were examined alone or in combination with the orthosteric CB1 agonist Δ8-tetrahydrocannabinol (Δ8-THC). Pain responses were assessed following capsaicin (1 µM) stimulation of injured corneas at 6 h post-cauterization. Corneal neutrophil infiltration was also analyzed. GAT228, but not GAT229 or GAT211, reduced pain scores in response to capsaicin stimulation.

Combination treatments of 0.5% GAT229 or 1% GAT211 with subthreshold Δ8-THC (0.4%) significantly reduced pain scores following capsaicin stimulation. The anti-nociceptive effects of both GAT229 and GAT228 were blocked with CB1 antagonist AM251, but remained unaffected in CB2-/- mice. Two percent GAT228, or the combination of 0.2% Δ8-THC with 0.5% GAT229 also significantly reduced corneal inflammation.

CB1 allosteric ligands could offer a novel approach for treating corneal pain and inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31968549

https://www.mdpi.com/1420-3049/25/2/417

Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson’s Disease.

 Image result for molecules journal“Parkinson’s disease is a neurodegenerative disorder, the motor symptoms of which are associated classically with Lewy body formation and nigrostriatal degeneration.

Neuroinflammation has been implicated in the progression of this disease, by which microglia become chronically activated in response to α-synuclein pathology and dying neurons, thereby acquiring dishomeostatic phenotypes that are cytotoxic and can cause further neuronal death.

Microglia have a functional endocannabinoid signaling system, expressing the cannabinoid receptors in addition to being capable of synthesizing and degrading endocannabinoids. Alterations in the cannabinoid system-particularly an upregulation in the immunomodulatory CB2 receptor-have been demonstrated to be related to the microglial activation state and hence the microglial phenotype.

This paper will review studies that examine the relationship between the cannabinoid system and microglial activation, and how this association could be manipulated for therapeutic benefit in Parkinson’s disease.”

https://www.ncbi.nlm.nih.gov/pubmed/31973235

“Microglia activation states and cannabinoid system: Therapeutic implications.  There is accumulating evidence indicating that cannabinoids (CBs) might serve as a promising tool to modify the outcome of inflammation, especially by influencing microglial activity. Microglia has a functional endocannabinoid (eCB) signaling system, composed of cannabinoid receptors and the complete machinery for the synthesis and degradation of eCBs. These actions make CBs a promising therapeutic tool to avoid the detrimental effects of inflammation and possibly paving the way to target microglia in order to generate a reparative milieu in neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pubmed/27373505

“These findings imply that a hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of these diseases. Scientific evidence shows that cannabis can provide symptomatic relief in several neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070159/

“Cannabinoids can have neuroprotective effects, and this can be exploited for therapeutic strategies against neurodegenerative diseases”   http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243800/

Cannabinoids CB2 Receptors, One New Promising Drug Target for Chronic and Degenerative Pain Conditions in Equine Veterinary Patients.

Journal of Equine Veterinary Science“Osteoarticular equine disease is a common cause of malady; in general, its therapy is supported on steroids and nonsteroidal anti-inflammatories. Nevertheless, many side effects may develop when these drugs are administered. Nowadays, the use of new alternatives for this pathology attention is demanded; in that sense, cannabinoid CB2 agonists may represent a novel alternative.

Cannabinoid belongs to a group of molecules known by their psychoactive properties; they are synthetized by the Cannabis sativa plant, better known as marijuana.

The aim of this study was to contribute to understand the pharmacology of cannabinoid CB2 receptors and its potential utilization on equine veterinary patients with a chronic degenerative painful condition. In animals, two main receptors for cannabinoids are recognized, the cannabinoid receptor type 1 and the cannabinoid receptor type 2. Once they are activated, both receptors exert a wide range of physiological responses, as nociception modulation.

Recently, it has been proposed the use of synthetic cannabinoid type 2 receptor agonists; those receptors looks to confer antinociceptive properties but without the undesired psychoactive side effects; for that reason, veterinary patients, whit chronical degenerative diseases as osteoarthritis may alleviate one of the most common symptom, the pain, which in some cases for several reasons, as patient individualities, or side effects produced for more conventional treatments cannot be attended in the best way.”

https://www.ncbi.nlm.nih.gov/pubmed/31952645

https://www.sciencedirect.com/science/article/abs/pii/S073708061930629X?via%3Dihub

Neuroprotective and Neuromodulatory Effects Induced by Cannabidiol and Cannabigerol in Rat Hypo-E22 cells and Isolated Hypothalamus.

antioxidants-logo “Cannabidiol (CBD) and cannabigerol (CBG) are non-psychotropic terpenophenols isolated from Cannabis sativa, which, besides their anti-inflammatory/antioxidant effects, are able to inhibit, the first, and to stimulate, the second, the appetite although there are no studies elucidating their role in the hypothalamic appetite-regulating network. Consequently, the aim of the present research is to investigate the role of CBD and CBG in regulating hypothalamic neuromodulators. Comparative evaluations between oxidative stress and food intake-modulating mediators were also performed.

RESULTS:

Both CBD and CBG inhibited NPY and POMC gene expression and decreased the 3-HK/KA ratio in the hypothalamus. The same compounds also reduced hypothalamic NE synthesis and DA release, whereas the sole CBD inhibited 5-HT synthesis.

CONCLUSION:

The CBD modulates hypothalamic neuromodulators consistently with its anorexigenic role, whereas the CBG effect on the same mediators suggests alternative mechanisms, possibly involving peripheral pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/31941059

https://www.mdpi.com/2076-3921/9/1/71

Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity.

ijms-logo“Contact hypersensitivity (CHS) is an established animal model for allergic contact dermatitis. Dendritic cells (DCs) play an important role in the sensitization phase of CHS by initiating T cell responses to topically applied haptens. The cannabinoid receptors 1 (CB1) and 2 (CB2) modulate DC functions and inflammatory skin responses, but their influence on the capacity of haptenized DCs to induce CHS is still unknown. We found lower CHS responses to 2,4-dinitro-1-fluorobenzene (DNFB) in wild type (WT) mice after adoptive transfer of haptenized Cnr2-/- and Cnr1-/-/Cnr2-/- bone marrow (BM) DCs as compared to transfer of WT DCs. In contrast, induction of CHS was not affected in WT recipients after transfer of Cnr1-/- DCs. In vitro stimulated Cnr2-/- DCs showed lower CCR7 and CXCR4 expression when compared to WT cells, while in vitro migration towards the chemokine ligands was not affected by CB2. Upregulation of MHC class II and co-stimulatory molecules was also reduced in Cnr2-/- DCs. This study demonstrates that CB2 modulates the maturation phenotype of DCs but not their chemotactic capacities in vitro. These findings and the fact that CHS responses mediated by Cnr2-/- DCs are reduced suggest that CB2 is a promising target for the treatment of inflammatory skin conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/31940843

https://www.mdpi.com/1422-0067/21/2/475

Nose-to-brain Delivery of Natural Compounds for the Treatment of Central Nervous System Disorders.

“Several natural compounds have demonstrated potential for the treatment of central nervous system disorders such as ischemic cerebrovascular disease, glioblastoma, neuropathic pain, neurodegenerative diseases, multiple sclerosis and migraine.

This is due to their well-known antioxidant, anti-inflammatory, neuroprotective, anti-tumor, anti-ischemic and analgesic properties. Nevertheless, many of these molecules have poor aqueous solubility, low bioavailability and extensive gastrointestinal and/or hepatic first-pass metabolism, leading to a quick elimination as well as low serum and tissue concentrations.

Thus, the intranasal route emerged as a viable alternative to oral or parenteral administration, by enabling a direct transport into the brain through the olfactory and trigeminal nerves. With this approach, the blood-brain barrier is circumvented and peripheral exposure is reduced, thereby minimizing possible adverse effects.

OBJECTIVE:

Herein, brain-targeting strategies for the nose-to-brain delivery of natural compounds, including flavonoids, cannabinoids, essential oils and terpenes, will be reviewed and discussed. Brain and plasma pharmacokinetics of these molecules will be analyzed and related to their physicochemical characteristics and formulation properties.

CONCLUSION:

Natural compounds constitute relevant alternatives for the treatment of brain diseases but often require loading into nanocarrier systems to reach the central nervous system in sufficient concentrations. Future challenges lie in a deeper characterization of their therapeutic mechanisms and in the development of effective, safe and brain-targeted delivery systems for their intranasal administration.”

https://www.ncbi.nlm.nih.gov/pubmed/31939728

http://www.eurekaselect.com/178321/article

Cannabidiol (CBD) for Treatment of Neurofibromatosis-related Pain and Concomitant Mood Disorder: A Case Report.

Image result for cureus journal“Neurofibromatosis type 1 (NF1) is a common genetic disorder. Pain is a major symptom of this disease which can be secondary to the development of plexiform and subcutaneous neurofibromas, musculoskeletal symptoms (such as scoliosis and pseudoarthrosis), and headaches. Visible neurofibromas add significant psychosocial distress for NF1 patients. Along with the chronic pain, psychosocial distress contributes to associated mood disorders, such as depression and anxiety.

Cannabis has been the focus of many studies for treating multiple conditions, including epilepsy, multiple sclerosis, Parkinsonism disease, and many chronic pain conditions. Cannabidiol (CBD) is the major non-psychotropic component of cannabis. CBD has shown anti-inflammatory and analgesic properties, as well as having mood stabilizer and anxiolytic effects.

In this report, we present the use of cannabidiol (CBD) for the management of chronic pain and concomitant mood disorder in an NF1 patient.”

https://www.ncbi.nlm.nih.gov/pubmed/31938604

https://www.cureus.com/articles/23602-cannabidiol-cbd-for-treatment-of-neurofibromatosis-related-pain-and-concomitant-mood-disorder-a-case-report

Use of cannabinoids in cancer patients: A Society of Gynecologic Oncology (SGO) clinical practice statement.

Gynecologic Oncology“Tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) affect the human endocannabinoid system.

Cannabinoids reduce chemotherapy induced nausea or vomiting (CINV) and neuropathic pain.

Each state has its own regulations for medical and recreational cannabis use.

Effects of cannabinoids on chemotherapy, immunotherapy, and tumor growth remain under investigation.

Providers should focus indications, alternatives, risks and benefits of medical cannabis use to make appropriate referrals.”

https://www.ncbi.nlm.nih.gov/pubmed/31932107

https://www.gynecologiconcology-online.net/article/S0090-8258(19)31805-0/fulltext

Activation of cannabinoid receptor type 2 reduces lung ischemia reperfusion injury through PI3K/Akt pathway.

Image result for int j clin exp pathol“Cannabinoid receptor-2 activation plays a protective role against ischemic reperfusion injury (IRI) in various organs, and exerts a protective effect against paraquat-induced acute lung injury, while the role of CB2 in lung IRI remains unclear.

Hence, the present study was designed to explore the role of CB2 in lung IRI, and whether the PI3K pathway was involved.

The study suggested that activation of CB2 receptor plays a protective role against IR-induced lung injury through reducing inflammation in mice.

The PI3K/Akt pathway might be involved in the protective effect of CB2 receptors in lung IRI.”

https://www.ncbi.nlm.nih.gov/pubmed/31933805

Involvement of endocannabinoid system, inflammation and apoptosis in diabetes induced liver injury: Role of 5-HT3 receptor antagonist.

International Immunopharmacology“Confident relationships between diabetes and liver damage have previously been established.

This study was designed to evaluate hepaticinflammation, apoptosis, and endocannabinoid system alterations in diabetes with or without tropisetron treatment.

These findings strongly support the idea that diabetes-induced liver abnormality is mediated by inflammatory reactions, apoptosis, and endocannabinoid system, and that these effects can be alleviated by using tropisetron as an antioxidant and anti-inflammatory agent.”

https://www.ncbi.nlm.nih.gov/pubmed/31926479

https://www.sciencedirect.com/science/article/pii/S1567576919322684?via%3Dihub