Is Cannabis of Potential Value as a Therapeutic for Inflammatory Bowel Disease?

“Cannabis is commonly used by patients with inflammatory bowel disease (IBD) to ameliorate their symptoms.

Patients claim that cannabis reduces pain, increases appetite, and reduces the need for other medications.

In conclusion, considering the mechanism of action of phytocannabinoids and the accumulating evidence of their anti-inflammatory effects in experimental and in vitro studies, it is reasonable to assume that cannabis can be of benefit in the treatment of IBD.”

https://www.ncbi.nlm.nih.gov/pubmed/31388856

https://link.springer.com/article/10.1007%2Fs10620-019-05763-8

Cannabinoid CB2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells.

 “Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor that has neuroprotective and anti-inflammatory effects, regulating more than 250 genes. As NRF2, cannabinoid receptor type 2 (CB2) is also implicated in the preservation of neurons against glia-driven inflammation. To this concern, little is known about the regulation pathways implicated in CB2 receptor expression. In this study, we analyze whether NRF2 could modulate the transcription of CB2 in neuronal and microglial cells. Bioinformatics analysis revealed an antioxidant response element in the promoter sequence of the CB2 receptor gene. Further analysis by chemical and genetic manipulations of this transcription factor demonstrated that NRF2 is not able to modulate the expression of CB2 in neurons. On the other hand, at the level of microglia, the expression of CB2 is NRF2-dependent. These results are related to the differential levels of expression of both genes regarding the brain cell type. Since modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neurodegeneration, our findings will contribute to disclose the potential of CB2 as a novel target for treating different pathologies.”

https://www.ncbi.nlm.nih.gov/pubmed/31385133

https://link.springer.com/article/10.1007%2Fs10571-019-00719-y

Δ9-Tetrahydrocannabinol suppresses monocyte-mediated astrocyte production of MCP-1 and IL-6 in a TLR7-stimulated human co-culture.

Journal of Pharmacology and Experimental Therapeutics“Cannabis is widely used in the United States with an estimated prevalence of 9.5%. Certain cannabinoids in Cannabis sativa, in particular, Δ9-tetrahydrocannabinol (THC), possess immune modulating and anti-inflammatory activity. Depending on the context, the anti-inflammatory activity of cannabinoids may be beneficial, such as in treating inflammatory diseases, or detrimental to normal immune defense against pathogens. The potential beneficial impact of cannabinoids on chronic neuroinflammation has gained recent attention. Monocyte migration to the brain has been implicated as a key event in chronic neuroinflammation and in the etiology of central nervous system diseases including viral infection (e.g., HIV-associated neurocognitive disorder). In the brain, monocytes can contribute to neuroinflammation through interactions with astrocytes, including inducing astrocyte secretion of cytokines and chemokines. In a human co-culture system, monocyte-derived IL-1β due to toll-like receptor 7 (TLR7)-activation, has been identified to promote astrocyte production of MCP-1 and IL-6. THC treatment of TLR7-stimulated co-culture suppressed monocyte secretion of IL-1β resulting in decreased astrocyte production of MCP-1 and IL-6. Furthermore, THC displayed direct inhibition of monocytes, as TLR7-stimulated monocyte monocultures treated with THC also showed suppressed IL-1β production. The cannabinoid receptor 2 (CB2) agonist, JWH-015, impaired monocyte IL-1β production similar to that of THC, suggesting THC is, in part, acting through CB2. THC also suppressed key elements of the IL-1β production pathway, including IL1B mRNA levels and caspase-1 activity. Collectively, this study demonstrates that the anti-inflammatory properties of THC suppress TLR7-induced monocyte secretion of IL-1β, through CB2, which results in decreased astrocyte secretion of MCP-1 and IL-6.

SIGNIFICANCE STATEMENT: As cannabis use is highly prevalent in the United States and has putative anti-inflammatory properties, it is important to investigate the effect of cannabinoids on immune cell function. Furthermore, cannabinoids have garnered particular interest due to their potential beneficial effects on attenuating viral-induced chronic neuroinflammation. This study utilized a primary human co-culture system to demonstrate that the major psychotropic cannabinoid in cannabis, Δ9-tetrahydrocannabinol (THC) and a cannabinoid receptor-2 (CB2) selective agonist, suppress specific monocyte-mediated astrocyte inflammatory responses. In the context of viral-induced chronic neuroinflammation, the findings presented here suggest that cannabinoids via CB2 ligation may have beneficial anti-inflammatory effects.”

https://www.ncbi.nlm.nih.gov/pubmed/31383729

http://jpet.aspetjournals.org/content/early/2019/08/05/jpet.119.260661

Cannabidiol Regulates the Expression of Keratinocyte Proteins Involved in the Inflammation Process through Transcriptional Regulation.

cells-logo “Cannabidiol (CBD), a natural phytocannabinoid without psychoactive effect, is a well-known anti-inflammatory and antioxidant compound.

The possibility of its use in cytoprotection of cells from harmful factors, including ultraviolet (UV) radiation, is an area of ongoing investigation. Therefore, the aim of this study was to evaluate the effect of CBD on the regulatory mechanisms associated with the redox balance and inflammation in keratinocytes irradiated with UVA [30 J/cm2] and UVB [60 mJ/cm2].

Spectrophotometric results show that CBD significantly enhances the activity of antioxidant enzymes such as superoxide dismutase and thioredoxin reductase in UV irradiated keratinocytes. Furthermore, despite decreased glutathione peroxidase and reductase activities, CBD prevents lipid peroxidation, which was observed as a decreased level of 4-HNE and 15d-PGJ2 (measured using GC/MS and LC/MS). Moreover, Western blot analysis of protein levels shows that, under stress conditions, CBD influences interactions of transcription factors Nrf2- NFκB by inhibiting the NFκB pathway, increasing the expression of Nrf2 activators and stimulating the transcription activity of Nrf2.

In conclusion, the antioxidant activity of CBD through Nrf2 activation as well as its anti-inflammatory properties as an inhibitor of NFκB should be considered during design of new protective treatments for the skin.”

https://www.ncbi.nlm.nih.gov/pubmed/31382646

https://www.mdpi.com/2073-4409/8/8/827

Stable Adult Hippocampal Neurogenesis in Cannabinoid Receptor CB2 Deficient Mice.

ijms-logo “The G-protein coupled cannabinoid receptor 2 (CB2) has been implicated in the regulation of adult neurogenesis in the hippocampus. The contribution of CB2 towards basal levels of proliferation and the number of neural progenitors in the subgranular zone (SGZ) of the dentate gyrus, however, remain unclear. We stained hippocampal brain sections of 16- to 17-week-old wildtype and CB2-deficient mice, for neural progenitor and immature neuron markers doublecortin (DCX) and calretinin (CR) and for the proliferation marker Ki67 and quantified the number of positive cells in the SGZ. The quantification revealed that CB2 deficiency neither altered overall cell proliferation nor the size of the DCX+ or DCX and CR double-positive populations in the SGZ compared to control animals. The results indicate that CB2 might not contribute to basal levels of adult neurogenesis in four-month-old healthy mice. CB2 signaling might be more relevant in conditions where adult neurogenesis is dynamically regulated, such as neuroinflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31374821

“Cannabinoids have been linked to the regulation of adult neurogenesis (AN), a process in the mammalian brain that takes place in stem cell niches in the adult brain and is responsible for the continued generation of new neurons.”

https://www.mdpi.com/1422-0067/20/15/3759/htm

β-Caryophyllene Mitigates Collagen Antibody Induced Arthritis (CAIA) in Mice Through a Cross-Talk between CB2 and PPAR-γ Receptors.

biomolecules-logo “β-caryophyllene (BCP) is a cannabinoid receptor 2 (CB2) agonist that tempers inflammation.

An interaction between the CB2 receptor and peroxisome proliferator-activated receptor gamma (PPAR-γ) has been suggested and PPAR-γ activation exerts anti-arthritic effects.

The aim of this study was to characterize the therapeutic activity of BCP and to investigate PPAR-γ involvement in a collagen antibody induced arthritis (CAIA) experimental model.

BCP significantly hampered the severity of the disease, reduced relevant pro-inflammatory cytokines, and increased the anti-inflammatory cytokine IL-13. BCP also decreased joint expression of matrix metalloproteinases 3 and 9. Arthritic joints showed increased COX2 and NF-ĸB mRNA expression and reduced expression of the PPARγ coactivator-1 alpha, PGC-1α, and PPAR-γ. These conditions were reverted following BCP treatment.

Finally, BCP reduced NF-ĸB activation and increased PGC-1α and PPAR-γ expression in human articular chondrocytes stimulated with LPS. These effects were reverted by AM630, a CB2 receptor antagonist.

These results suggest that BCP ameliorates arthritis through a cross-talk between CB2 and PPAR-γ.”

https://www.ncbi.nlm.nih.gov/pubmed/31370242

https://www.mdpi.com/2218-273X/9/8/326

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

The curative effect of cannabinoid 2 receptor agonist on functional failure and disruptive inflammation caused by intestinal ischemia and reperfusion.

Fundamental & Clinical Pharmacology banner“Ischemia and reperfusion of intestinal tissue (intestinal I/R) induces disruption of ileal contractility and chain responses of inflammatory.

The aim of this study was to reveal whether therapeutic value of cannabinoid 2 (CB2) receptor activity in the intestinal I/R, via to the exogenous administration of CB2 agonist (AM-1241).

Intestinal I/R injury were performed through 30 min ischemia and 150 min reperfusion of mesenteric artery in Wistar rats. The pre-administered doses of 0.1, 1, and 5 mg/kg of CB2 agonist were studied to inhibit inflammation of intestinal I/R injury including ileum smooth muscle contractility, polymorphonuclear cell migration, oxidant/antioxidant defence system, and provocative cytokines.

Pre-administration with CB2 receptor agonist ensured to considerable improving the disrupted contractile responses in ileum smooth muscle along with decreased the formation of MDA that production of lipid peroxidation, reversed the depleted glutathione, inhibited the expression of TNF-α and of IL-1β in the intestinal I/R of rats.

Taken together results of this research, the agonistic activity of CB2 receptor for healing of intestinal I/R injury is ensuring associated with anti-inflammatory mechanisms such as the inhibiting of migration of inflammatory polymorphonuclear cells that origin of acute and initial responses of inflammation, the inhibiting of production of provocative and pro-inflammatory cytokines like TNF-α and IL-1β, the rebalancing of oxidant/antioxidant redox system disrupted in injury of reperfusion period, and the supporting of physiologic defensive systems in endothelial and inducible inflammatory cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31373049

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12502

Cannabichromene is a cannabinoid CB2 receptor agonist.

British Journal of Pharmacology banner“Cannabichromene (CBC) is one of the most abundant phytocannabinoids in Cannabis spp. It has modest anti-nociceptive and anti-inflammatory effects and potentiates some effects of Δ9 – tetrahydrocannabinol (THC) in vivo. How CBC exerts these effects is poorly defined and there is little information about its efficacy at cannabinoid receptors. We sought to determine the functional activity of CBC at CB1 and CB2 receptors.

KEY RESULTS:

CBC activated CB2 but not CB1 receptors to produce a hyperpolarization of AtT20 cells. This activation was inhibited by a CB2 antagonist AM630, and sensitive to pertussis toxin. Application of CBC reduced activation of CB2 receptors (but not CB1 receptors) by subsequent co-application of CP55,940, an efficacious CB1 and CB2 agonist. Continuous CBC application induced loss of cell surface CB2 receptors and desensitisation of the CB2-induced hyperpolarization.

CONCLUSIONS AND IMPLICATIONS:

CBC is a selective CB2 receptor agonist displaying higher efficacy than THC in hyperpolarising AtT20 cells. CBC can also recruit CB2 receptor regulatory mechanisms. CBC may contribute to the potential therapeutic effectiveness of some cannabis preparations, potentially through CB2-mediated modulation of inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31368508

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14815

Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome.

Brain, Behavior, and Immunity“Currently, a combination of marijuana cannabinoids including delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is used as a drug to treat muscle spasticity in patients with Multiple Sclerosis (MS).

Because these cannabinoids can also suppress inflammation, it is unclear whether such patients benefit from suppression of neuroinflammation and if so, what is the mechanism through which cannabinoids act.

In the currently study, we used a murine model of MS, experimental autoimmune encephalomyelitis (EAE), to study the role of gut microbiota in the attenuation of clinical signs of paralysis and inflammation caused by cannabinoids.

THC+CBD treatment attenuated EAE and caused significant decrease in inflammatory cytokines such as IL-17 and IFN-γ while promoting the induction of anti-inflammatory cytokines such as IL-10 and TGF-β. Use of 16S rRNA sequencing on bacterial DNA extracted from the gut revealed that EAE mice showed high abundance of mucin degrading bacterial species, such as Akkermansia muciniphila (A.muc), which was significantly reduced after THC+CBD treatment.

Fecal Material Transfer (FMT) experiments confirmed that THC+CBD-mediated changes in the microbiome play a critical role in attenuating EAE. In silico computational metabolomics revealed that LPS biosynthesis, a key component in gram-negative bacteria such as A.muc, was found to be elevated in EAE mice which was confirmed by demonstrating higher levels of LPS in the brain, while treatment with THC+CBD reversed this trend. EAE mice treated with THC+CBD also had significantly higher levels of short chain fatty acids such as butyric, isovaleric, and valeric acids compared to naïve or disease controls.

Collectively, our data suggest that cannabinoids may attenuate EAE and suppress neuroinflammation by preventing microbial dysbiosis seen during EAE and promoting healthy gut microbiota.”

https://www.ncbi.nlm.nih.gov/pubmed/31356922

https://www.sciencedirect.com/science/article/pii/S0889159119306476?via%3Dihub

In-hospital outcomes of inflammatory bowel disease in cannabis users: a nationwide propensity-matched analysis in the United States.

“Literature suggests the role of cannabis (marijuana) as an anti-inflammatory agent. However, the impact of recreational marijuana usage on in-hospital outcomes of inflammatory bowel disease (IBD) remains indistinct.

We assessed the outcomes of Crohn’s disease (CD) as well as ulcerative colitis (UC) with vs. without recreational marijuana usage using a nationally illustrative propensity-matched sample.

RESULTS:

Propensity-matched cohorts included 6,002 CD (2,999 cannabis users & 3,003 non-users) and 1,481 UC (742 cannabisusers & 739 non-users) hospitalizations. In CD patients, prevalence of colorectal cancer (0.3% vs. 1.2%, P<0.001), need for parenteral nutrition (3.0% vs. 4.7%, P=0.001) and anemia (25.6% vs. 30.1%, P<0.001) were lower in cannabis users. However, active fistulizing disease or intraabdominal abscess formation (8.6% vs. 5.9%, P<0.001), unspecific lower gastrointestinal (GI) hemorrhage (4.0% vs. 2.7%, P=0.004) and hypovolemia (1.2% vs. 0.5%, P=0.004) were higher with recreational cannabis use. The mean hospital stay was shorter (4.2 vs. 5.0 days) with less hospital charges ($28,956 vs. $35,180, P<0.001) in cannabis users. In patients with UC, cannabis users faced the higher frequency of fluid and electrolyte disorders (45.1% vs. 29.6%, P<0.001), and hypovolemia (2.7% vs.<11) with relatively lower frequency of postoperative infections (<11 vs. 3.4%, P=0.010). No other complications were significant enough for comparison between the cannabis users and non-users in this group. Like CD, UC-cannabis patients had shorter mean hospital stay (LOS) (4.3 vs. 5.7 days, P<0.001) and faced less financial burden ($30,393 vs. $41,308, P<0.001).

CONCLUSIONS:

We found a lower frequency of colorectal cancer, parenteral nutrition, anemia but a higher occurrences of active fistulizing disease or intraabdominal abscess formation, lower GI hemorrhage and hypovolemia in the CD cohort with cannabis usage. In patients with UC, frequency of complications could not be compared between the two cohorts, except a higher frequency of fluid and electrolyte disorders and hypovolemia, and a lower frequency of postoperative infections with cannabis use. A shorter length of stay (LOS)  and lesser hospital charges were observed in both groups with recreational marijuana usage.”

https://www.ncbi.nlm.nih.gov/pubmed/31355219

http://atm.amegroups.com/article/view/25637/24217