Selective Activation of Cannabinoid Receptor 2 Attenuates Myocardial Infarction via Suppressing NLRP3 Inflammasome.

“The administration of cannabinoid receptor 2 (CB2R) agonist has been reported to produce a cardioprotective effect against the pathogenesis and progression of myocardial infarction (MI).

Here in this study, we investigated the specific mechanism related to inflammatory suppression. JWH-133 was used for the activation of CB2R.

Taken together, we demonstrated for the first time the cardioprotective effect of CB2R agonist and its NLRP3 inflammasome-related mechanism in MI.”

Hemp (Cannabis sativa L.) Seed Phenylpropionamides Composition and Effects on Memory Dysfunction and Biomarkers of Neuroinflammation Induced by Lipopolysaccharide in Mice.

ACS Omega

“Hempseed has achieved a growing popularity in human nutrition, particularly regarding essential amino acids and fatty acids. The multiple positive attributes of hempseed have led to the further study of its constituents.

In this study, hempseed extract containing phenylpropionamides (TPA) was obtained and its chemical profile and content were obtained using high-performance liquid chromatography technology based on previous study.

The anti-neuroinflammatory effect of TPA extract was evaluated using a lipopolysaccharide (LPS)-induced mouse model. Fourteen phenylpropionamides (TPA) were identified in the obtained extract with a total content of 233.52 ± 2.50 μg/mg extract.

In mice, TPA prevented the learning and spatial memory damage induced by LPS. Increased brain levels of IL-1β, IL-6, and TNF-α in the LPS-induced mice were reduced by TPA treatment. Furthermore, TPA attenuated LPS-induced hippocampal neuronal damage in mice.

This study demonstrates the nutraceutical potential of hempseed from a neuroprotective perspective.”

https://www.ncbi.nlm.nih.gov/pubmed/30556022

https://pubs.acs.org/doi/10.1021/acsomega.8b02250

Cannabinoids: Potential Role in Inflammatory and Neoplastic Skin Diseases.

 

“The endocannabinoid system is a complex and nearly ubiquitous network of endogenous ligands, enzymes, and receptors that can also be stimulated by exogenous compounds such as those derived from the marijuana plant, Cannabis sativa.

Recent data have shown that the endocannabinoid system is fully functional in the skin and is responsible for maintaining many aspects of skin homeostasis, such as proliferation, differentiation, and release of inflammatory mediators. Because of its role in regulating these key processes, the endocannabinoid system has been studied for its modulating effects on both inflammatory disorders of the skin and skin cancer.

Although legal restrictions on marijuana as a Schedule I drug in the USA have made studying cannabinoid compounds unfavorable, an increasing number of studies and clinical trials have focused on the therapeutic uses of cannabinoids. This review seeks to summarize the current, and rapidly expanding field of research on the broad potential uses of cannabinoids in inflammatory and neoplastic diseases of the skin.”

https://www.ncbi.nlm.nih.gov/pubmed/30542832

Cannabinoid 2 receptor attenuates inflammation during skin wound healing by inhibiting M1 macrophages rather than activating M2 macrophages.

Image result for journal of inflammation

“The anti-inflammatory properties of the cannabinoid 2 receptor (CB2R) in injury and inflammatory diseases have been widely substantiated. Specifically, the anti-inflammatory effect of CB2R may be achieved by regulating macrophage polarisation.

Several research findings suggested that the activation of CB2R could attenuate inflammation by reducing pro-inflammatory M1 macrophage polarisation and promoting anti-inflammatory M2 polarisation.

However, considering CB2R inhibits fibrosis and M2 promotes fibrosis, that the activation of CB2R may lead to an increase in M2 macrophages seems contradictory. Therefore, we hypothesised that the activation of CB2R to attenuate inflammation is not achieved by up-regulating M2 macrophages.

In summary, our findings suggested that during incised skin wound healing in mice, increased levels of CB2R may affect inflammation by regulating M1 rather than M2 macrophage subtype polarisation.

These results offer a novel understanding of the molecular mechanisms involved in the inhibition of inflammation by CBR2 that may lead to new treatments for cutaneous inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/30534003

https://journal-inflammation.biomedcentral.com/articles/10.1186/s12950-018-0201-z

Effects of cannabinoids in Amyotrophic Lateral Sclerosis (ALS) murine models: A systematic review and meta-analysis.

Publication cover image

“Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder that results from motor neuron damage.

Cannabinoids have been proposed as treatments for ALS due to their anti-excitotoxicity, anti-oxidant, and anti-inflammatory effects.

This review provides some evidence for the efficacy of cannabinoids in prolonging survival time in an ALS mouse model. A delay in disease progression is also suggested following cannabinoid treatment”

https://www.ncbi.nlm.nih.gov/pubmed/30520038

https://onlinelibrary.wiley.com/doi/abs/10.1111/jnc.14639

“The endocannabinoid system in amyotrophic lateral sclerosis. There is increasing evidence that cannabinoids and manipulation of the endocannabinoid system may have therapeutic value in ALS, in addition to other neurodegenerative conditions. Cannabinoids exert anti-glutamatergic and anti-inflammatory actions through activation of the CB(1) and CB(2) receptors, respectively. Cannabinoid agents may also exert anti-oxidant actions by a receptor-independent mechanism. Therefore the ability of cannabinoids to target multiple neurotoxic pathways in different cell populations may increase their therapeutic potential in the treatment of ALS.”  https://www.ncbi.nlm.nih.gov/pubmed/18781981

http://www.thctotalhealthcare.com/category/amyotrophic-lateral-sclerosis-als-lou-gehrigs-disease/

Cannabinoid receptor 2 agonist prevents local and systemic inflammatory bone destruction in rheumatoid arthritis.

Publication cover image

“Cannabinoid receptor 2 (CB2) has been implicated as an important clinical regulator of inflammation and malignant osteolysis. Here, we observed that CB2 expression was markedly higher in the collagen-induced arthritis (CIA) mice synovium and bone tissues than in the non-inflamed synovium and bone tissues. We found that JWH133 ameliorates pathologic bone destruction in CIA mice via the inhibition of osteoclastogenesis and modulation of inflammatory responses, thereby highlighting its potential as a treatment for human rheumatoid arthritis.”

https://www.ncbi.nlm.nih.gov/pubmed/30508319

https://onlinelibrary.wiley.com/doi/abs/10.1002/jbmr.3637

Cannabinoid receptor type-1 partially mediates metabolic endotoxemia-induced inflammation and insulin resistance.

Physiology & Behavior

“Cannabinoid receptor type-1 partially mediates metabolic endotoxemia-induced inflammation and insulin resistance. Despite no significant differences in body weight among groups, chronic exposure to low-level LPS altered hepatic endocannabinoid signaling, increased inflammation, and impaired insulin sensitivity and insulin clearance. CB1 inhibition significantly attenuated LPS signaling, which attenuated LPS-induced metabolic alterations. Therefore, we concluded that CB1 contributes to LPS-mediated inflammation and insulin resistance, suggesting that blocking CB1 signaling may have therapeutic benefits in reducing inflammation-induced metabolic abnormalities.”

https://www.ncbi.nlm.nih.gov/pubmed/30502357

https://www.sciencedirect.com/science/article/abs/pii/S0031938418304190?via%3Dihub

The Therapeutic Potential of Cannabinoids in Dermatology

Skin Therapy Letter

“Cannabinoids have demonstrated utility in the management of cancer, obesity, and neurologic disease. More recently, their immunosuppressive and anti-inflammatory properties have been identified for the treatment of several dermatologic conditions.” https://www.ncbi.nlm.nih.gov/pubmed/30517778

The Therapeutic Potential of Cannabinoids in Dermatology

The Role of CB2 Receptor in the Recovery of Mice after Traumatic Brain Injury.

 Journal of Neurotrauma cover image“Cannabis is one of the most widely used plant drugs in the world today. In spite of the large number of scientific reports on medical marijuana there still exists much controversy surrounding its use and the potential for abuse due to the undesirable psychotropic effects. However, recent developments in medicinal chemistry of novel non-psychoactive synthetic cannabinoids have indicated that it is possible to separate some of the therapeutic effects from the psychoactivity. We have previously shown that treatment with the endocannabinoid 2-AG that binds to both CB1 and CB2 receptors 1 hr after traumatic brain injury in mice attenuates neurological deficits, edema formation, infarct volume, blood-brain barrier permeability, neuronal cell loss at the CA3 hippocampal region and neuroinflammation. Recently, we synthesized a set of camphor-resorcinol derivatives, which represent a novel series of CB2 receptor selective ligands. Most of the novel compounds exhibited potent binding and agonistic properties at the CB2 receptors, with very low affinity for the CB1 receptor, and some were highly anti-inflammatory. This selective binding correlated with their intrinsic activities. HU-910 and HU-914 were selected in the present study to evaluate their potential effect in the pathophysiology of traumatic brain injury (TBI). In mice and rats, subjected to closed head injury and treated with these novel compounds, we showed enhanced neurobehavioral recovery, inhibition of TNF-alpha production, increased synaptogenesis and partial recovery of the cortical spinal tract. We propose these CB2 agonists as potential drugs for development of novel therapeutic modality to TBI.”

https://www.ncbi.nlm.nih.gov/pubmed/30489198

https://www.liebertpub.com/doi/10.1089/neu.2018.6063

Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma.

European Journal of Pharmacology

“Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Asthma remains a major public health problem and, at present, there are no effective interventions capable of reversing airway remodelling.

Cannabidiol (CBD) is known to exert immunomodulatory effects through the activation of cannabinoid-1 and -2 (CB1 and CB2) receptors located in the central nervous system and immune cells, respectively. However, as the role of CBD on airway remodelling and the mechanisms of CB1 and CB2 aren’t fully elucidated, this study was designed to evaluate the effects of cannabidiol in this scenario.

Allergic asthma was induced in Balb/c mice exposed to ovalbumin, and respiratory mechanics, collagen fibre content in airway and alveolar septa, cytokine levels, and CB1 and CB2 expression were determined. Moreover, expressions of CB1 and CB2 in induced sputum of asthmatic individuals and their correlation with airway inflammation and lung function were also evaluated.

CBD treatment, regardless of dosage, decreased airway hyperresponsiveness, whereas static lung elastance only reduced with high dose. These outcomes were accompanied by decreases in collagen fibre content in both airway and alveolar septa and the expression of markers associated with inflammation in the bronchoalveolar lavage fluid and lung homogenate. There was a significant and inverse correlation between CB1levels and lung function in asthmatic patients.

CBD treatment decreased the inflammatory and remodelling processes in the model of allergic asthma. The mechanisms of action appear to be mediated by CB1/CB2 signalling, but these receptors may act differently on lung inflammation and remodelling.”

https://www.ncbi.nlm.nih.gov/pubmed/30481497

https://www.sciencedirect.com/science/article/pii/S0014299918306836?via%3Dihub