Therapeutic applications of cannabinoids.

Chemico-Biological Interactions

“The psychoactive properties of cannabinoids are well known and there has been a continuous controversy regarding the usage of these compounds for therapeutic purposes all over the world. Their use for medical and research purposes are restricted in various countries. However, their utility as medications should not be overshadowed by their negative physiological activities.

This review article is focused on the therapeutic potential and applications of phytocannabinoids and endocannabinoids. It highlights their mode of action, overall effects on physiology, various in vitro and in vivo studies that have been done so far and the extent to which these compounds can be useful in different disease conditions such as cancer, Alzheimer’s disease, multiple sclerosis, pain, inflammation, glaucoma and many others.

Thus, this work is an attempt to make the readers understand the positive implications of these compounds and indicates the significant developments that can occur upon utilizing cannabinoids as therapeutic agents.”  https://www.ncbi.nlm.nih.gov/pubmed/30040916

“Cannabinoids can be used as therapeutic agents.”   https://www.sciencedirect.com/science/article/pii/S0009279718307373?via%3Dihub

Cannabidiol restores differentiation capacity of LPS exposed adipose tissue mesenchymal stromal cells.

Experimental Cell Research

“Multipotent mesenchymal stromal cells (MSCs) support wound healing processes. These cells express toll-like receptors (TLRs). TLRs perform important key functions when the immune system is confronted with danger signals. TLR ligation by lipopolysaccharides (LPS) activates MSCs and induces intracellular signaling cascades, which affect their differentiation profile, increase the release of inflammatory cytokines and the production of reactive oxygen species. Continuing exposure to LPS triggers prolonged inflammatory reactions, which may lead to deleterious conditions, e.g. non-healing wounds.

Cannabidiol (CBD) exerts anti-inflammatory processes through cannabinoid receptor dependent and independent mechanisms. In the present study, we examined whether CBD could influence the inflammatory MSC phenotype.

Exposure to LPS increased the release of IL-6, as well as other soluble factors, and elevated levels of oxidized macromolecules found in cell homogenisates. While the amount of IL-6 was unaffected, co-treatment with CBD reduced the oxidative stress acting on the cells. LPS inhibited adipogenic as well as chondrogenic differentiation, which was attenuated by CBD treatment. In the case of adipogenesis, the disinhibitory effect probably depended on CBD interaction with the peroxisome proliferator-activated receptor-γ.

CBD could exert mild immunosuppressive properties on MSCs, while it most effectively acted anti-oxidatively and by restoring the differentiation capacity upon LPS treatment.” https://www.ncbi.nlm.nih.gov/pubmed/30036540

“Cannabidiol (CBD) reduces oxidative stress and restores adipogenesis and chondrogenesis of mesenchymal stromal cells (MSCs) upon lipopolysaccharides (LPS)  exposure.” https://linkinghub.elsevier.com/retrieve/pii/S0014482718304312

VCE-004.3, A CANNABIDIOL AMINOQUINONE DERIVATIVE, PREVENTS BLEOMYCIN-INDUCED SKIN FIBROSIS AND INFLAMMATION TROUGH PPARγ- AND CB2 -DEPENDENT PATHWAYS.

Publication cover image

“The endocannabinoid system (ECS) as well as PPARγ are relevant targets for the development of novel compounds against fibrotic diseases such as Systemic Sclerosis (SSc), also called Scleroderma.

The aim of this study was to characterize VCE-004.3, a novel cannabidiol derivative, and to study it anti-inflammatory and anti-fibrotic activities.

CONCLUSION AND IMPLICATIONS:

VCE-004.3 is a novel semi-synthetic cannabidiol derivative behaving as a dual PPARγ/CB2 agonist and CB1 receptor modulator that could be considered for the development of novel therapies against different forms of Scleroderma.”

https://www.ncbi.nlm.nih.gov/pubmed/30033591

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14450

In Vitro Model of Neuroinflammation: Efficacy of Cannabigerol, a Non-Psychoactive Cannabinoid.

ijms-logo

“Inflammation and oxidative stress play main roles in neurodegeneration. Interestingly, different natural compounds may be able to exert neuroprotective actions against inflammation and oxidative stress, protecting from neuronal cell loss.

Among these natural sources, Cannabis sativa represents a reservoir of compounds exerting beneficial properties, including cannabigerol (CBG), whose antioxidant properties have already been demonstrated in macrophages.

Here, we aimed to evaluate the ability of CBG to protect NSC-34 motor neurons against the toxicity induced from the medium of LPS-stimulated RAW 264.7 macrophages.

All together, these results indicated the neuroprotective effects of CBG, that may be a potential treatment against neuroinflammation and oxidative stress.”

https://www.ncbi.nlm.nih.gov/pubmed/29986533

http://www.mdpi.com/1422-0067/19/7/1992

The Management of Lower Urinary Tract Dysfunction in Multiple Sclerosis.

Current Neurology and Neuroscience Reports

“Multiple sclerosis (MS) is the most frequent neuroinflammatory disease of the central nervous system and is commonly associated with lower urinary tract (LUT) dysfunction. As a consequence, health-related quality of life is often impaired and the upper urinary tract might be at risk for damage. The aim of this review is to give an overview of current treatment options for LUT dysfunction in patients with MS.

RECENT FINDINGS:

The treatment is tailored to the type of dysfunction-storage or voiding dysfunction-beginning with conservative treatment options and ending with invasive therapies and surgery. Additionally, alternative options, e.g., different intravesical therapies or cannabinoids, have been evaluated in recent years with promising results. Current available therapies offer different possible treatments for LUT dysfunction in patients with MS. They address either voiding or storage dysfunction and therefore ameliorate LUT symptoms improve quality of life and protect the upper urinary tract.”

Brain endocannabinoid signaling exhibits remarkable complexity.

Image result for Brain Res Bull.

“The endocannabinoid (eCB) signaling system is one of the most extensive of the mammalian brain. Despite the involvement of only few specific ligands and receptors, the system encompasses a vast diversity of triggered mechanisms and driven effects. It mediates a wide range of phenomena, including the regulation of transmitter release, neural excitability, synaptic plasticity, impulse spread, long-term neuronal potentiation, neurogenesis, cell death, lineage segregation, cell migration, inflammation, oxidative stress, nociception and the sleep cycle. It is also known to be involved in the processes of learning and memory formation. This extensive scope of action is attained by combining numerous variables. In a properly functioning brain, the correlations of these variables are kept in a strictly controlled balance; however, this balance is disrupted in many pathological conditions. However, while this balance is known to be disrupted by drugs in the case of addicts, the stimuli and mechanisms influencing the neurodegenerating brain remain elusive. This review examines the multiple factors and phenomena affecting the eCB signaling system in the brain. It evaluates techniques of controlling the eCB system to identify the obstacles in their applications and highlights the crucial interdependent variables that may influence biomedical research outcomes.”

https://www.ncbi.nlm.nih.gov/pubmed/29953913

The potential protective effects of cannabinoid receptor agonist WIN55,212-2 on cognitive dysfunction is associated with the suppression of autophagy and inflammation in an experimental model of vascular dementia.

Psychiatry Research Home

“Vascular dementia (VaD) is characteristic of chronic brain ischemia and progressive memory decline, which has a high incidence in the elderly. However, there are no effective treatments for VaD, and the underlying mechanism of its pathogenesis remains unclear.

This study investigated the effects of a synthetic cannabinoid receptor agonist WIN55,212-2 (WIN) on VaD, and molecular mechanisms of the effects.

These data indicate that WIN exerts a neuroprotective effect on the cognitive deficits of VaD rats, which may be associated with the suppression of excessive autophagy and inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/29945070

https://www.psy-journal.com/article/S0165-1781(17)31479-8/fulltext

The impact of Cannabidiol treatment on regulatory T-17 Cells and neutrophil polarization in Acute Kidney Injury.

 American Journal of Physiology-Renal Physiology 0 0 cover image

“Hallmark features of acute kidney injury (AKI) include mobilization of immune and inflammatory mechanisms culminating in tissue injury. Emerging information indicates heterogeneity of neutrophils with pro- and anti-inflammatory functions (N1 and N2, respectively). Also, regulatory T-17 (Treg17) cells curtail Th-17-mediated pro-inflammatory responses. However, the status of Treg17 cells and neutrophil phenotypes in AKI are not established.

Further, cannabidiol exerts immunoregulatory effects but its impact on Treg17 cells and neutrophil subtypes is not established. Thus, we examined the status of Treg17 cells and neutrophil subtypes in AKI and determined whether cannabidiol favors regulatory neutrophils and T cells accompanied with renoprotection.

Importantly, cannabidiol treatment preserved ψm, reduced cell death and KIM-1 accompanied by restoration of N1 and N2 imbalance and preservation of Treg17 cells while decreasing Th-17 cells. The ability of cannabidiol to favor development of Treg17 cells was further established using functional mixed lymphocytic reaction. Subsequent studies showed higher renal blood flow and reduced serum creatinine in cannabidiol-treated IRI animals.

Collectively, our novel observations establish that renal IRI causes neutrophil polarization in favor of N1 and also reduces Treg17 cells in favor of Th-17, effects that are reversed by cannabidiol treatment accompanied with significant renoprotection.”

https://www.ncbi.nlm.nih.gov/pubmed/29897289

Betacaryophyllene – A phytocannabinoid as potential therapeutic modality for human sepsis?

Medical Hypotheses Home

“Sepsis is a clinical condition resulting from a dysregulated immune response to an infection that leads to organ dysfunction. Despite numerous efforts to optimize treatment, sepsis remains to be the main cause of death in most intensive care units.

The endogenous cannabinoid system (ECS) plays an important role in inflammation.

Cannabinoid receptor 2 (CB2R) activation is immunosuppressive, which might be beneficial during the hyper-inflammatory phase of sepsis.

Beta-caryophyllene (BCP) is a non-psychoactive natural cannabinoid (phytocannabinoid) found in Cannabis sativa and in essential oils of spices and food plants, that acts as a selective agonist of CB2R.

We propose BCP administration as novel treatment to reduce hyper-inflammation in human sepsis.”

A cannabinoid receptor 2 agonist reduces blood-brain barrier damage via induction of MKP-1 after intracerebral hemorrhage in rats.

Image result for Brain Res. journal

“The blood-brain barrier (BBB) disruption and the following development of brain edema, is the most life-threatening secondary injury after intracerebral hemorrhage (ICH).

This study is to investigate a potential role and mechanism of JWH133, a selected cannabinoid receptor type2 (CB2R) agonist, on protecting blood-brain barrier integrity after ICH.

CONCLUSIONS:

CB2R agonist alleviated neuroinflammation and protected blood-brain barrier permeability in a rat ICH model. Further molecular mechanisms revealed which is probably mediated by enhancing the expression of MKP-1, then inhibited MAPKs signal transduction.”

https://www.ncbi.nlm.nih.gov/pubmed/29886251