Increased expression of type 1 cannabinoid (CB1) receptor among patients with rotator cuff lesions and shoulder stiffness.

:Journal of Shoulder and Elbow Surgery Home

“Shoulder stiffness is a disease manifested by pain, limited range of motion, and functional disability. The inflammatory and fibrosis processes play a substantial role in the pathogenesis of shoulder stiffness. The CB1 receptor has been recognized to mediate the processes of pathologic fibrosis.

This study investigated the role of the CB1 pathway in pathogenesis of rotator cuff lesions with shoulder stiffness.

The CB1 pathway is involved in the pathogenesis of shoulder stiffness. It may be a promising target for the treatment of rotator cuff lesions with shoulder stiffness.”

https://www.ncbi.nlm.nih.gov/pubmed/29108858

http://www.jshoulderelbow.org/article/S1058-2746(17)30589-X/fulltext

Parameters of the Endocannabinoid System as Novel Biomarkers in Sepsis and Septic Shock.

metabolites-logo

“Sepsis represents a dysregulated immune response to infection, with a continuum of severity progressing to septic shock. This dysregulated response generally follows a pattern by which an initial hyperinflammatory phase is followed by a state of sepsis-associated immunosuppression.

Major challenges in improving sepsis care include developing strategies to ensure early and accurate identification and diagnosis of the disease process, improving our ability to predict outcomes and stratify patients, and the need for novel sepsis-specific treatments such as immunomodulation.

Biomarkers offer promise with all three of these challenges and are likely also to be the solution to determining a patient’s immune status; something that is critical in guiding effective and safe immunomodulatory therapy. Currently available biomarkers used in sepsis lack sensitivity and specificity, among other significant shortcomings.

The endocannabinoid system (ECS) is an emerging topic of research with evidence suggesting a ubiquitous presence on both central and peripheral tissues, including an intrinsic link with immune function. This review will first discuss the state of sepsis biomarkers and lack of available treatments, followed by an introduction to the ECS and a discussion of its potential to provide novel biomarkers and treatments.”

https://www.ncbi.nlm.nih.gov/pubmed/29104224

http://www.mdpi.com/2218-1989/7/4/55

The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: clues for other neuroinflammatory diseases.

Cover image

“Multiple sclerosis is the most common inflammatory demyelinating disease of the central nervous system, caused by an autoimmune response against myelin that eventually leads to progressive neurodegeneration and disability. Although the knowledge on its underlying neurobiological mechanisms has considerably improved, there is a still unmet need for new treatment options, especially for the progressive forms of the disease.

Both preclinical and clinical data suggest that cannabinoids, derived from the Cannabis sativa plant, may be used to control symptoms such as spasticity and chronic pain, whereas only preclinical data indicate that these compounds and their endogenous counterparts, i.e. the endocannabinoids, may also exert neuroprotective effects and slow down disease progression.

Here, we review the preclinical and clinical studies that could explain the therapeutic action of cannabinoid-based medicines, as well as the medical potential of modulating endocannabinoid signaling in multiple sclerosis, with a link to other neuroinflammatory disorders that share common hallmarks and pathogenetic features.”

https://www.ncbi.nlm.nih.gov/pubmed/29097192

http://www.sciencedirect.com/science/article/pii/S0301008217300709

N-Arachidonoyl Dopamine: A Novel Endocannabinoid and Endovanilloid with Widespread Physiological and Pharmacological Activities.

Mary Ann Liebert, Inc. publishers

“N-arachidonoyl dopamine (NADA) is a member of the family of endocannabinoids to which several other N-acyldopamines belong as well. Their activity is mediated through various targets that include cannabinoid receptors or transient receptor potential vanilloid (TRPV)1. Synthesis and degradation of NADA are not yet fully understood. Nonetheless, there is evidence that NADA plays an important role in nociception and inflammation in the central and peripheral nervous system. The TRPV1 receptor, for which NADA is a potent agonist, was shown to be an endogenous transducer of noxious heat. Moreover, it has been demonstrated that NADA exerts protective and antioxidative properties in microglial cell cultures, cortical neurons, and organotypical hippocampal slice cultures. NADA is present in very low concentrations in the brain and is seemingly not involved in activation of the classical pathways. We believe that treatment with exogenous NADA during and after injury might be beneficial. This review summarizes the recent findings on biochemical properties of NADA and other N-acyldopamines and their role in physiological and pathological processes. These findings provide strong evidence that NADA is an effective agent to manage neuroinflammatory diseases or pain and can be useful in designing novel therapeutic strategies.”

https://www.ncbi.nlm.nih.gov/pubmed/29082315

http://online.liebertpub.com/doi/10.1089/can.2017.0015

Anti-Inflammatory Activity in Colon Models Is Derived from Δ9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in Cannabis Extracts.

“Inflammatory bowel diseases (IBDs) include Crohn’s disease, and ulcerative colitis. Cannabis sativa preparations have beneficial effects for IBD patients. However, C. sativa extracts contain hundreds of compounds. Although there is much knowledge of the activity of different cannabinoids and their receptor agonists or antagonists, the cytotoxic and anti-inflammatory activity of whole C. sativa extracts has never been characterized in detail with in vitro and ex vivo colon models.

Material and Methods: The anti-inflammatory activity of C. sativa extracts was studied on three lines of epithelial cells and on colon tissue. C. sativa flowers were extracted with ethanol, enzyme-linked immunosorbent assay was used to determine the level of interleukin-8 in colon cells and tissue biopsies, chemical analysis was performed using high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance and gene expression was determined by quantitative real-time PCR.

Results: The anti-inflammatory activity of Cannabis extracts derives from D9-tetrahydrocannabinolic acid (THCA) present in fraction 7 (F7) of the extract. However, all fractions of C. sativa at a certain combination of concentrations have a significant increased cytotoxic activity. GPR55 receptor antagonist significantly reduces the anti-inflammatory activity of F7, whereas cannabinoid type 2 receptor antagonist significantly increases HCT116 cell proliferation. Also, cannabidiol (CBD) shows dose dependent cytotoxic activity, whereas anti-inflammatory activity was found only for the low concentration of CBD, and in a bell-shaped rather than dose-dependent manner. Activity of the extract and active fraction was verified on colon tissues taken from IBD patients, and was shown to suppress cyclooxygenase-2 (COX2) and metalloproteinase-9 (MMP9) gene expression in both cell culture and colon tissue.

Conclusions: It is suggested that the anti-inflammatory activity of Cannabis extracts on colon epithelial cells derives from a fraction of the extract that contains THCA, and is mediated, at least partially, via GPR55 receptor. The cytotoxic activity of the C. sativa extract was increased by combining all fractions at a certain combination of concentrations and was partially affected by CB2 receptor antagonist that increased cell proliferation. It is suggested that in a nonpsychoactive treatment for IBD, THCA should be used rather than CBD.”

Selective activation of cannabinoid receptor-2 reduces neuroinflammation after traumatic brain injury via alternative macrophage polarization.

Cover image

“Inflammation is an important mediator of secondary neurological injury after traumatic brain injury (TBI). Endocannabinoids, endogenously produced arachidonate based lipids, have recently emerged as powerful anti-inflammatory compounds, yet the molecular and cellular mechanisms underlying these effects are poorly defined. Endocannabinoids are physiological ligands for two known cannabinoid receptors, CB1R and CB2R. In the present study, we hypothesized that selective activation of CB2R attenuates neuroinflammation and reduces neurovascular injury after TBI. Taken together, our findings support the development of selective CB2R agonists as a therapeutic strategy to improve TBI outcomes while avoiding the psychoactive effects of CB1R activation.”   https://www.ncbi.nlm.nih.gov/pubmed/29079445   http://www.sciencedirect.com/science/article/pii/S0889159117304774

“The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration. The first approved cannabinoid drugs were analogues of Δ9-tetrahydrocannabinol (Δ9-THC). Dronabinol is a natural isomer of THC that is found in the cannabis plant” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435344/

“Cannabinoid Receptor CB2 Is Involved in Tetrahydrocannabinol-Induced Anti-Inflammation against Lipopolysaccharide in MG-63 Cells. These results suggested that CB2 is involved in the THC-induced anti-inflammation”  https://www.hindawi.com/journals/mi/2015/362126/

“Cannabinoids as novel anti-inflammatory drugs. Manipulation of endocannabinoids and/or use of exogenous cannabinoids in vivo can constitute a potent treatment modality against inflammatory disorders.  For several centuries, marijuana has been used as an alternative medicine in many cultures and, recently, its beneficial effects have been shown”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828614/

“Cannabinoids as neuroprotective agents in traumatic brain injury.  Cannabinoids of all classes have the ability to protect neurons from a variety of insults that are believed to underlie delayed neuronal death after traumatic brain injury (TBI), including excitotoxicity, calcium influx, free radical formation and neuroinflammation.” https://www.ncbi.nlm.nih.gov/pubmed/15281893

“Effect of marijuana use on outcomes in traumatic brain injury. A positive THC screen is associated with decreased mortality in adult patients sustaining TBI.”  https://www.ncbi.nlm.nih.gov/pubmed/25264643

Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling.

Neuropharmacology

“Monoacylglycerol lipase (MGL) hydrolyzes 2-arachidonoylglycerol to arachidonic acid and glycerol. Inhibition of MGL may attenuate neuroinflammation by enhancing endocannabinoid signaling and decreasing prostaglandin (PG) production. Almost half of HIV infected individuals are afflicted with HIV-associated neurocognitive disorder (HAND), a neuroinflammatory disease in which cognitive decline correlates with synapse loss. HIV infected cells shed the envelope protein gp120 which is a potent neurotoxin that induces synapse loss. Here, we tested whether inhibition of MGL, using the selective inhibitor JZL184, would prevent synapse loss induced by gp120. The number of synapses between rat hippocampal neurons in culture was quantified by imaging clusters of a GFP-tagged antibody-like protein that selectively binds to the postsynaptic scaffolding protein, PSD95. JZL184 completely blocked gp120-induced synapse loss. Inhibition of MGL decreased gp120-induced interleukin-1β (IL-1β) production and subsequent potentiation of NMDA receptor-mediated calcium influx. JZL184-mediated protection of synapses was reversed by a selective cannabinoid type 2 receptor (CB2R) inverse agonist/antagonist. JZL184 also reduced gp120-induced prostaglandin E2 (PGE2) production; PG signaling was required for gp120-induced IL-1β expression and synapse loss. Inhibition of MGL prevented gp120-induced synapse loss by activating CB2R resulting in decreased production of the inflammatory cytokine IL-1β. Because PG signaling was required for gp120-induced synapse loss, JZL184-induced decreases in PGE2 levels may also protect synapses. MGL presents a promising target for preventing synapse loss in neuroinflammatory conditions such as HAND.”

https://www.ncbi.nlm.nih.gov/pubmed/29061509

http://www.sciencedirect.com/science/article/pii/S0028390817304902?via%3Dihub

Efficacy, tolerability and safety of cannabis-based medicines for chronic pain management – An overview of systematic reviews.

European Journal of Pain

“Medicinal cannabis has already entered mainstream medicine in some countries.

Cannabis-based medicines undoubtedly enrich the possibilities of drug treatment of chronic pain conditions.

It remains the responsibility of the health care community to continue to pursue rigorous study of cannabis-based medicines to provide evidence that meets the standard of 21st century clinical care.”

https://www.ncbi.nlm.nih.gov/pubmed/29034533

http://onlinelibrary.wiley.com/doi/10.1002/ejp.1118/abstract

Cannabinoid Receptor 1 Participates in Liver Inflammation by Promoting M1 Macrophage Polarization via RhoA/NF-κB p65 and ERK1/2 Pathways, Respectively, in Mouse Liver Fibrogenesis.

Image result for frontiers in immunology

“Macrophage M1/M2 polarization mediates tissue damage and inflammatory responses. Cannabinoid receptor (CB) 1 participated in liver fibrogenesis by affecting bone marrow (BM)-derived monocytes/macrophages (BMMs) activation. However, the knowledge of whether CB1 is involved in the polarization of BMMs remains limited.

Here, we found M1 gene signatures (including CD86, MIP-1β, tumor necrosis factor, IL-6, and inducible nitric oxide synthase) and the amount of M1 macrophages (CD86+ cells, gated by F4/80) were significantly elevated in carbon tetrachloride (CCl4)-induced mouse injured livers, while that of M2 type macrophages had little change by RT-qPCR and fluorescence-activated cell sorting (FACS).

Our preceding study confirmed CB1 was involved in CCl4-induced liver fibrogenesis. Our results noted CB1 expression showed positive correlation with CD86. Blockade of CB1 by its antagonist or siRNA in vivo downregulated the mRNA and protein levels of M1 markers using RT-qPCR, western blot, and Cytometric Bead Array (CBA) assays, and reduced the proportion of M1 macrophages. Moreover, chimera mouse models, which received BM transplants from EGFP-transgenic mice or clodronate liposome injection mouse models, in which Kupffer cells were depleted, were performed to clarify the role of CB1 on the polarization of Kupffer cells and BMMs.

We found that CB1 was especially involved in BMM polarization toward M1 phenotype but have no effect on that of Kupffer cells. The reason might due to the lower CB1 expression in Kupffer cells than that of BMMs. In vitro, we discovered CB1 was involved in the polarization of BMMs toward M1. Furthermore, CB1-induced M1 polarization was apparently impaired by PTX [G(α)i/o protein inhibitor], Y27632 (ROCK inhibitor), and PD98059 [extracellular signal-regulated kinase (ERK) inhibitor], while SB203580 (p38 inhibitor) and compound C (AMPK inhibitor) had no such effect. ACEA (CB1 agonist) activated G(α)i/o coupled CB1, then enlarged GTP-bound Rho and phosphor-ERK1/2, independently. NF-κB p65 nuclear translocation is also a marker of M1 phenotype macrophages. We found that CB1 switched on NF-κB p65 nuclear translocation only depending on G(α)i/o/RhoA signaling pathway.

CONCLUSION:

CB1 plays a crucial role in regulating M1 polarization of BMMs in liver injury, depending on two independent signaling pathways: G(α)i/o/RhoA/NF-κB p65 and G(α)i/o/ERK1/2 pathways.”

Modulation of Renal GLUT2 by the Cannabinoid-1 Receptor: Implications for the Treatment of Diabetic Nephropathy.

Related image

“Altered glucose reabsorption via the facilitative glucose transporter 2 (GLUT2) during diabetes may lead to renal proximal tubule cell (RPTC) injury, inflammation, and interstitial fibrosis. These pathologies are also triggered by activating the cannabinoid-1 receptor (CB1R), which contributes to the development of diabetic nephropathy (DN). However, the link between CB1R and GLUT2 remains to be determined. Here, we show that chronic peripheral CB1R blockade or genetically inactivating CB1Rs in the RPTCs ameliorated diabetes-induced renal structural and functional changes, kidney inflammation, and tubulointerstitial fibrosis in mice. Inhibition of CB1R also downregulated GLUT2 expression, affected the dynamic translocation of GLUT2 to the brush border membrane of RPTCs, and reduced glucose reabsorption. Thus, targeting peripheral CB1R or inhibiting GLUT2 dynamics in RPTCs has the potential to treat and ameliorate DN. These findings may support the rationale for the clinical testing of peripherally restricted CB1R antagonists or the development of novel renal-specific GLUT2 inhibitors against DN.”

https://www.ncbi.nlm.nih.gov/pubmed/29030466

http://jasn.asnjournals.org/content/early/2017/10/12/ASN.2017040371