Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

 Lipids

“The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids.

The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids.

Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.”

https://www.ncbi.nlm.nih.gov/pubmed/28875399

https://link.springer.com/article/10.1007%2Fs11745-017-4292-8

“The seed of Cannabis sativa L. has been an important source of nutrition for thousands of years in Old World cultures. Technically a nut, hempseed typically contains over 30% oil and about 25% protein, with considerable amounts of dietary fiber, vitamins and minerals. Hempseed oil is over 80% in polyunsaturated fatty acids (PUFAs), and is an exceptionally rich source of the two essential fatty acids (EFAs) linoleic acid (18:2 omega-6) and alpha-linolenic acid (18:3 omega-3). The omega-6 to omega-3 ratio (n6/n3) in hempseed oil is normally between 2:1 and 3:1, which is considered to be optimal for human health. Hempseed has been used to treat various disorders for thousands of years in traditional oriental medicine.”  http://link.springer.com/article/10.1007%2Fs10681-004-4811-6

Topical cannabinoids in dermatology.

Image result for cutis journal

“Topical cannabinoids are increasingly utilized by dermatology patients for a range of disorders; however, the acceptance of these over-the-counter products has far outpaced scientific investigation into their safety and efficacy. Here, we review the studies of topical cannabinoids in skin conditions and assess their current place in dermatology practice.”

https://www.ncbi.nlm.nih.gov/pubmed/28873100

“The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757311/

“Cannabinoid system in the skin – a possible target for future therapies in dermatology.” https://www.ncbi.nlm.nih.gov/pubmed/19664006

“Anti-inflammatory cannabinoids for skin diseases”  https://www.endoca.com/blog/discovery/anti-inflammatory-cannabinoids-skin-diseases/

“Topical cannabinoids may help to treat skin diseases”  http://www.medicalnewstoday.com/articles/316968.php

Mechanisms of action of cannabidiol in adoptively transferred experimental autoimmune encephalomyelitis.

Cover image

“Cannabidiol (CBD) is one of the most important compounds in Cannabis sativa, lacks psychotropic effects, and possesses a high number of therapeutic properties including the amelioration of experimental autoimmune encephalomyelitis (EAE).

The aim of this study was to analyse the relative efficacy of CBD in adoptively transferred EAE (at-EAE), a model that allows better delineation of the effector phase of EAE.

Preventive intraperitoneal treatment with CBD ameliorated the clinical signs of at-EAE. CBD markedly improved the clinical signs of at-EAE and reduced infiltration, demyelination and axonal damage. The CBD-mediated decrease in the viability of encephalitogenic cells involves ROS generation, apoptosis and a decrease in IL-6 production and may contribute to the therapeutic effect of this compound.”

https://www.ncbi.nlm.nih.gov/pubmed/28867485

http://www.sciencedirect.com/science/article/pii/S0014488617302212

Can You Pass the Acid Test? Critical Review and Novel Therapeutic Perspectives of Δ9-Tetrahydrocannabinolic Acid A.

Mary Ann Liebert, Inc. publishers

“Δ9-tetrahydrocannabinolic acid A (THCA-A) is the acidic precursor of Δ9-tetrahydrocannabinol (THC), the main psychoactive compound found in Cannabis sativa. THCA-A is biosynthesized and accumulated in glandular trichomes present on flowers and leaves, where it serves protective functions and can represent up to 90% of the total THC contained in the plant. THCA-A slowly decarboxylates to form THC during storage and fermentation and can further degrade to cannabinol. Decarboxylation also occurs rapidly during baking of edibles, smoking, or vaporizing, the most common ways in which the general population consumes Cannabis. Contrary to THC, THCA-A does not elicit psychoactive effects in humans and, perhaps for this reason, its pharmacological value is often neglected. In fact, many studies use the term “THCA” to refer indistinctly to several acid derivatives of THC. Despite this perception, many in vitro studies seem to indicate that THCA-A interacts with a number of molecular targets and displays a robust pharmacological profile that includes potential anti-inflammatory, immunomodulatory, neuroprotective, and antineoplastic properties. Moreover, the few in vivo studies performed with THCA-A indicate that this compound exerts pharmacological actions in rodents, likely by engaging type-1 cannabinoid (CB1) receptors. Although these findings may seem counterintuitive due to the lack of cannabinoid-related psychoactivity, a careful perusal of the available literature yields a plausible explanation to this conundrum and points toward novel therapeutic perspectives for raw, unheated Cannabis preparations in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/28861488

http://online.liebertpub.com/doi/10.1089/can.2016.0008

Increased Renal 2-Arachidonoylglycerol Level Is Associated with Improved Renal Function in a Mouse Model of Acute Kidney Injury.

Mary Ann Liebert, Inc. publishers

“Acute kidney injury (AKI) is associated with a significantly increased risk of morbidity and mortality. Ischemia-reperfusion injury (IRI) is a major cause of AKI. In this study, we investigated the role of the endocannabinoid (EC) system in renal IRI using a well-established mouse model.

Results: Renal IRI was associated with significantly increased serum BUN and creatinine, increased tubular damage score, increased expression of renal markers of inflammation and oxidative stress and elevated renal 2-AG content. Pretreatment with JZL184 was associated with a significant increase in renal 2-AG content and there was also improved serum BUN, creatinine and tubular damage score. However, renal expression of inflammation and oxidative stress markers remained unchanged.

Conclusions: This is the first report documenting that renal IRI is associated with an increase in kidney 2-AG content. Further enhancement of 2-AG levels using JZL184 improved indices of renal function and histology, but did not lower renal expression of markers of inflammation and oxidative stress. Further studies are needed to determine the mechanisms responsible for the effects observed and the potential value of 2-AG as a therapeutic target in renal IRI.”

The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain.

Image result for Neuropsychopharmacology

“A great need exists for the development of new medications to treat pain resulting from various disease states and types of injury. Given that the endogenous cannabinoid (ie, endocannabinoid) system modulates neuronal and immune cell function, both of which play key roles in pain, therapeutics targeting this system hold promise as novel analgesics.

Potential therapeutic targets include the cannabinoid receptors, type 1 and 2, as well as biosynthetic and catabolic enzymes of the endocannabinoids N-arachidonoylethanolamine and 2-arachidonoylglycerol. Notably, cannabinoid receptor agonists as well as inhibitors of endocannabinoid-regulating enzymes fatty acid amide hydrolase and monoacylglycerol lipase produce reliable antinociceptive effects, and offer opioid-sparing antinociceptive effects in myriad preclinical inflammatory and neuropathic pain models.

Emerging clinical studies show that ‘medicinal’ cannabis or cannabinoid-based medications relieve pain in human diseases, such as cancer, multiple sclerosis, and fibromyalgia.

Here, we examine the preclinical and clinical evidence of various endocannabinoid system targets as potential therapeutic strategies for inflammatory and neuropathic pain conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/28857069

https://www.nature.com/npp/journal/vaop/naam/abs/npp2017204a.html

Even High Doses of Oral Cannabidol Do Not Cause THC-Like Effects in Humans

Mary Ann Liebert, Inc. publishers

“Cannabidiol (CBD) is a cannabinoid of the cannabis plant devoid of intoxicating effects. It may be of therapeutic value in a large number of diseases, including epilepsy, anxiety disorders, depression, schizophrenic psychosis, inflammatory diseases, dystonia, nausea, and vomiting without causing relevant or severe side effects.

No biosynthetic enzyme or pathway exists in the human body to convert CBD to THC.

This short communication examines the question whether the experimental data presented in a study by Merrick et al. are of clinical relevance. These authors found that cannabidiol (CBD), a major cannabinoid of the cannabis plant devoid of psychotropic effects and of great interest for therapeutic use in several medical conditions, may be converted in gastric fluid into the psychoactive cannabinoids delta-8-THC and delta-9-THC to a relevant degree. They concluded that “the acidic environment during normal gastrointestinal transit can expose orally CBD-treated patients to levels of THC and other psychoactive cannabinoids that may exceed the threshold for a positive physiological response.” They issued a warning concerning oral use of CBD and recommend the development of other delivery methods.

However, the available clinical data do not support this conclusion and recommendation, since even high doses of oral CBD do not cause psychological, psychomotor, cognitive, or physical effects that are characteristic for THC or cannabis rich in THC. On the contrary, in the past decades and by several groups, high doses of oral CBD were consistently shown to cause opposite effects to those of THC in clinical studies. In addition, administration of CBD did not result in detectable THC blood concentrations.

Thus, there is no reason to avoid oral use of CBD, which has been demonstrated to be a safe means of administration of CBD, even at very high doses.”

https://www.ncbi.nlm.nih.gov/pubmed/28861499

http://online.liebertpub.com/doi/full/10.1089/can.2016.0036

“A Conversion of Oral Cannabidiol to Delta9-Tetrahydrocannabinol Seems Not to Occur in Humans.”  https://www.ncbi.nlm.nih.gov/pubmed/28861507

Cannabinoid Receptor 2 Modulates Neutrophil Recruitment in a Murine Model of Endotoxemia.

 

Image result for hindawi

“The endocannabinoid system consists of endogenous lipid mediators and cannabinoid receptors (CB) 1 and 2. It has previously been demonstrated that activation of the leukocyte-expressed CB2 has anti-inflammatory effects in vivo. Here, we report its role under baseline conditions and in a model of low-dose endotoxemia by comparing CB2 knockout to littermate control mice. CB2-deficient mice displayed significantly more neutrophils and fewer monocytes in the bone marrow under steady state. In initial validation experiments, administration of 1 mg/kg LPS to male C57BL/6J mice was shown to transiently upregulate systemic proinflammatory mediators (peaked at 2 hours) and mobilise bone marrow neutrophils and monocytes into circulation. In CB2 knockout mice, the level of the metalloproteinase MMP-9 was significantly elevated by 2 hours and we also observed augmented recruitment of neutrophils to the spleen in addition to increased levels of Ccl2Ccl3Cxcl10, and Il6. Collectively, our data show that the absence of CB2 receptor increases the levels of innate immune cell populations in the bone marrow under steady state. Furthermore, during an acute systemic inflammatory insult, we observe a highly reproducible and site-specific increase in neutrophil recruitment and proinflammatory chemokine expression in the spleen of CB2 knockout mice.”  https://www.ncbi.nlm.nih.gov/pubmed/28852269

“In summary, we found that the lack of this GPCR leads to enhanced retention of neutrophils and increased release of monocytes in the bone marrow under steady state. We highlight a critical role for CB2 in regulating neutrophil infiltration to the spleen during acute systemic inflammation. A potential mechanism for this effect is the increased secretion of MMP-9 and Ccl3/Cxcl10 expression in the spleens of CB2 knockout mice. Taken together, we propose a novel role for CB2 in suppressing neutrophil migration to lymphoid organs under inflammatory conditions which we believe warrants further investigation.” https://www.hindawi.com/journals/mi/2017/4315412/

Cannabinoids and Pain: Sites and Mechanisms of Action.

Advances in Pharmacology

“The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28826543

http://www.sciencedirect.com/science/article/pii/S1054358917300443?via%3Dihub

Is the Cannabinoid CB2 Receptor a Major Regulator of the Neuroinflammatory Axis of the Neurovascular Unit in Humans?

Elsevier

“The central nervous system (CNS) is an immune privileged site where the neurovascular unit (NVU) and the blood-brain barrier (BBB) act as a selectively permeable interface to control the passage of nutrients and inflammatory cells into the brain parenchyma. However, in response to injury, infection, or disease, CNS cells become activated, and release inflammatory mediators to recruit immune cells to the site of inflammation.

Increasing evidence suggests that cannabinoids may have a neuroprotective role in CNS inflammatory conditions.

For many years, it was widely accepted that cannabinoid receptor type 1 (CB1) modulates neurological function centrally, while peripheral cannabinoid receptor type 2 (CB2) modulates immune function.

As knowledge about the physiology and pharmacology of the endocannabinoid system advances, there is increasing interest in targeting CB2 as a potential treatment for inflammation-dependent CNS diseases (Ashton & Glass, 2007), where recent rodent and human studies have implicated intervention at the level of the NVU and BBB.

These are incredibly important in brain health and disease. Therefore, this review begins by explaining the cellular and molecular components of these systems, highlighting important molecules potentially regulated by cannabinoid ligands and then takes an unbiased look at the evidence in support (or otherwise) of cannabinoid receptor expression and control of the NVU and BBB function in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/28826541

http://www.sciencedirect.com/science/article/pii/S1054358917300376?via%3Dihub