It’s Colorectal Cancer Awareness Month. Please Be Aware:

“Prevention and Treatment of Colorectal Cancer by Natural Agents From Mother Nature. This review clearly demonstrates that various nutraceuticals provided by the Mother Nature have a huge potential for both prevention and treatment of Colorectal cancer (CRC). Since these agents can be administered chronically without any concern for safety and are highly affordable, their use has been the wave of the past and is likely to continue as the wave of the future.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693477/
“Links between inflammation and colon cancer metastasis” https://www.sciencedaily.com/releases/2015/08/150825094923.htm
“Inflammation and colon cancer. The connection between inflammation and tumorigenesis is well-established. Inflammation is also likely to be involved with other forms of sporadic as well as heritable colon cancer.https://www.ncbi.nlm.nih.gov/pubmed/20420949
“Cannabis-derived substances in cancer therapy–an emerging anti-inflammatory role for the cannabinoids. Chronic inflammation has been associated with neoplasia for sometime, and as a consequence, reducing inflammation as a way of impacting cancer presents a new role for these compounds. https://www.ncbi.nlm.nih.gov/pubmed/20925645
“Cannabinoids as gastrointestinal anti-inflammatory drugs.” https://www.ncbi.nlm.nih.gov/pubmed/28239924
“Colon Cancer Risk Linked To High-Fat Diet: How Eating More Fat Can Increase Intestinal Tumors” http://www.medicaldaily.com/colon-cancer-high-fat-diet-intestinal-tumors-376664
 
“Study: Red and Processed Meats Linked With Colon Cancer Risk” http://healthland.time.com/2011/05/27/study-red-and-processed-meats-linked-with-colon-cancer-risk/
 
“Eating hot dogs, ham and other processed meat can cause colorectal cancer, and eating red meat “probably” can cause cancer, the World Health Organization’s cancer agency reported” http://www.usatoday.com/story/news/nation/2015/10/26/experts-processed-meats-can-cause-cancer/74615390/
 
“Mediterranean Diet Reduces Risk of Colon Cancer”
 
 
“More evidence a veg diet might lower cancer risk” http://www.today.com/health/veggie-diet-lowers-colon-cancer-risk-t7671
 
 
 
“Omegas linked with colon cancer survival. A large, observational study has linked higher intake of omega-3s with a lower risk of dying from colon cancer.” http://www.newhope.com/breaking-news/omegas-linked-colon-cancer-survival
 “Study shows how high-fat diets increase colon cancer risk” http://news.temple.edu/news/2012-03-06/study-shows-how-high-fat-diets-increase-colon-cancer-risk
“Poor metabolic health linked to increased risk for colorectal cancer in normal-weight women” http://www.news-medical.net/news/20170201/Poor-metabolic-health-linked-to-increased-risk-for-colorectal-cancer-in-normal-weight-women.aspx
 
“Cheese, Milk, and Fatty Fish Can Help Fight Colon Cancer” https://munchies.vice.com/en_us/article/cheese-milk-and-fatty-fish-can-help-fight-colon-cancer
“Diet, exercise and aspirin: 3 tools to fight colon cancer” http://ktar.com/story/1314810/diet-exercise-aspirin-3-tools-fight-colon-cancer/
“Many Early Colon Cancers Linked to Inherited Genes” https://medlineplus.gov/news/fullstory_162574.html
“E.coli Bacteria Linked to Colon Cancer” http://www.ibtimes.co.uk/e-coli-bateria-linked-colon-cancer-375102
 
“Colorectal cancer prevalence linked to human papillomavirus: a systematic review with meta-analysis” http://www.scielo.br/scielo.php?pid=S1415-790X2016000400791&script=sci_arttext&tlng=en
“Colon cancer linked to viruses in beef, Nobel-winning scientist contends” http://www.scmp.com/lifestyle/health/article/1695757/colon-cancer-linked-viruses-beef-nobel-winning-scientist-contends
 
“Diet High in Choline Linked with Increased Risk of Colorectal Polyps. According to the results of a study published in the Journal of the National Cancer Institute, high intake of choline-a nutrient found in foods such as red meat, eggs, poultry, and dairy products-may be linked with an increased risk of colorectal polyps.” http://news.cancerconnect.com/diet-high-in-choline-linked-with-increased-risk-of-colorectal-polyps/
“High-Glycemic Foods Linked to Colon Cancer. These foods include breads, pastas, pancakes, and other carbohydrates made from refined “white” grains, as well as other processed or sugary foods such as cakes, cookies, and other snacks.” http://www.webmd.com/colorectal-cancer/news/20040203/high-glycemic-foods-linked-to-colon-cancer#1
 
“Low-carb diet cuts risk of colon cancer” https://www.utoronto.ca/news/low-carb-diet-cuts-risk-colon-cancer
 
“Common food additive promotes colon cancer in mice. Emulsifiers, which are added to most processed foods to aid texture and extend shelf life, can alter intestinal bacteria in a manner that promotes intestinal inflammation and colorectal cancer” https://www.sciencedaily.com/releases/2016/11/161107110639.htm
“Processed meats including bacon, hot dogs linked to colon cancer” http://www.cp24.com/news/processed-meats-including-bacon-hot-dogs-linked-to-colon-cancer-1.2627498
“Processed meat can cause colon cancer, World Health Organization says” http://www.cbc.ca/news/health/meat-cancer-world-health-organization-1.3288355
 
“Sweets, sugary snacks linked to colorectal cancer” http://www.cbsnews.com/news/sweets-sugary-snacks-linked-to-colorectal-cancer/
“Eating Nuts Linked to Lower Risk of Colon Cancer” http://www.livescience.com/54448-eating-nuts-may-lower-colon-cancer-risk.html
 
“Coffee consumption linked to lower risk of colorectal cancer” http://www.ctvnews.ca/health/coffee-consumption-linked-to-lower-risk-of-colorectal-cancer-1.2841834
“Alcohol Linked to Colorectal Cancer Risk” http://www.medscape.com/viewarticle/749886
“Excessive alcohol consumption favours high risk polyp or colorectal cancer occurrence among patients with adenomas: a case control study” http://gut.bmj.com/content/50/1/38.full
 
“High vitamin D levels linked to lower risk of colon cancer” http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_22-1-2010-13-46-0
 
“Anthocyanins in Purple, Blue and Red Foods Fight Colon Cancer” http://reliawire.com/anthocyanins-purple-blue-red-foods-fight-colon-cancer/
 
“Prunes reduce colon cancer risk by benefiting healthy gut bacteria” http://www.belmarrahealth.com/prunes-reduce-colon-cancer-risk-by-benefiting-healthy-gut-bacteria/
“BLACK RASPBERRIES A POTENTIALLY POWERFUL AGENT IN FIGHT AGAINST COLON CANCER” https://researchnews.osu.edu/archive/brberry.htm
 
 
 
 
 
“G‐protein coupled receptor 55 (GPR55), a lysophospholipid receptor, has been shown to play an important role in carcinogenesis. GPR55 is involved in the migratory behaviour of colon carcinoma cells and may serve as a pharmacological target for the prevention of metastasis.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688947/
“The putative cannabinoid receptor GPR55 promotes cancer cell proliferation.” http://www.ncbi.nlm.nih.gov/pubmed/21057532
 “L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Evidence points to a role of L-α-lysophosphatidylinositol (LPI) in cancer.” http://www.ncbi.nlm.nih.gov/pubmed/21367464
“Modulation of l-α-Lysophosphatidylinositol/GPR55 Mitogen-activated Protein Kinase (MAPK) Signaling by Cannabinoids*Here, we report that the little investigated cannabis constituents CBDV, CBGA, and CBGV are potent inhibitors of LPI-induced GPR55 signaling. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. Our findings also suggest that GPR55 may be a new pharmacological target for the following C. sativa constituents: Δ9-THCV, CBDV, CBGA, and CBGV. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249141/
 “Cannabinoids and cancer: potential for colorectal cancer therapy.” https://www.ncbi.nlm.nih.gov/pubmed/16042581
 “The endogenous cannabinoid system protects against colonic inflammation”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC385396/
 “Cannabinoids in intestinal inflammation and cancer. In vivo, cannabinoids – via direct or indirect activation of CB(1) and/or CB(2) receptors – exert protective effects in well-established models of intestinal inflammation and colon cancer. Pharmacological elevation of endocannabinoid levels may be a promising strategy to counteract intestinal inflammation and colon cancer.” http://www.ncbi.nlm.nih.gov/pubmed/19442536
 “Cannabinoids have become a novel therapeutic approach against colon cancer with protective and anti-tumoral effects on colorectal carcinoma cell lines and in animal models of colon cancer” http://impactjournals.com/oncoscience/index.php?pii=119 
 “Possible endocannabinoid control of colorectal cancer growth. Inhibitors of endocannabinoid inactivation may prove useful anticancer agents.” https://www.ncbi.nlm.nih.gov/pubmed/12949714
“Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. Cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increasing evidence shows antitumor actions of cannabinoid agonists on several tumor cells in vitro and in animal models” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755791/

“Loss of cannabinoid receptor 1 accelerates intestinal tumor growth”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561258/

“Turned-off Cannabinoid Receptor Turns On Colorectal Tumor Growth” https://www.sciencedaily.com/releases/2008/08/080801074056.htm

“Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention. Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).” http://www.news-medical.net/news/2008/08/03/40485.aspx

“Cannabinoid Receptor Activation Induces Apoptosis through Tumor Necrosis Factor α–Mediated Ceramide De novo Synthesis in Colon Cancer Cells. The present study shows that either CB1 or CB2 receptor activation induces apoptosis through ceramide de novo synthesis in colon cancer cells. ” http://clincancerres.aacrjournals.org/content/14/23/7691.long

“The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Here, we report that CB1 and CB2 cannabinoid receptors are expressed in human colorectal adenoma and carcinoma cells, and show for the first time that THC induces apoptosis in colorectal cancer cells. The use of THC, or selective targeting of the CB1 receptor, may represent a novel strategy for colorectal cancer therapy.” http://www.ncbi.nlm.nih.gov/pubmed/17583570

“Programmed Cell Death (Apoptosis)” http://www.ncbi.nlm.nih.gov/books/NBK26873/

“Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer” http://www.medicinenet.com/script/main/art.asp?articlekey=91511

“Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. Cannabidiol, a safe and non-psychotropic ingredient of Cannabis sativa, exerts pharmacological actions (antioxidant and intestinal antinflammatory) and mechanisms (inhibition of endocannabinoid enzymatic degradation) potentially beneficial for colon carcinogenesis. It is concluded that cannabidiol exerts chemopreventive effect in vivo and reduces cell proliferation through multiple mechanisms.” https://www.ncbi.nlm.nih.gov/pubmed/22231745

“CBD-Rich Marijuana Fights Colon Cancer, New Study Finds” http://blog.sfgate.com/smellthetruth/2014/01/06/cbd-rich-marijuana-fights-colon-cancer-new-study-finds/

“Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Cannabis-based medicines are useful adjunctive treatments in cancer patients.” http://www.ncbi.nlm.nih.gov/pubmed/24373545

“Cannabigerol (CBG) is a safe non-psychotropic Cannabis-derived cannabinoid. CBG hampers colon cancer progression in vivo and selectively inhibits the growth of colorectal cancer cells. CBG should be considered translationally in colorectal cancer prevention and cure.” http://www.ncbi.nlm.nih.gov/pubmed/25269802

“According to researchers at the University of Texas in Houston chemicals in marijuana could be a potential cure in the treatment of colon cancer.” http://www.digitaljournal.com/article/258161

“Cannabis compound clue to colon cancer”  https://www.newscientist.com/article/mg19926685.000-cannabis-compound-clue-to-colon-cancer/

“Marijuana takes on colon cancer” https://www.newscientist.com/article/dn14451-marijuana-takes-on-colon-cancer/

“Cannabinoids appear to kill tumor cells but do not affect their nontransformed counterparts and may even protect them from cell death. Tumor specimens revealed that THC had antiangiogenic and antiproliferative effects. CBD has also been demonstrated to exert a chemopreventive effect in a mouse model of colon cancer. In in vitro experiments involving colorectal cancer cell lines, the investigators found that CBD protected DNA from oxidative damage, increased endocannabinoid levels, and reduced cell proliferation. In addition, both plant-derived and endogenous cannabinoids have been studied for anti-inflammatory effects. A mouse study demonstrated that endogenous cannabinoid system signaling is likely to provide intrinsic protection against colonic inflammation. As a result, a hypothesis that phytocannabinoids and endocannabinoids may be useful in the risk reduction and treatment of colorectal cancer has been developed.” http://www.cancer.gov/about-cancer/treatment/cam/hp/cannabis-pdq#section/_7

CB2 cannabinoid receptors modulate HIF-1α and TIM-3 expression in a hypoxia-ischemia mouse model.

Image result for european neuropsychopharmacology

“The role of CB2 cannabinoid receptors (CB2R) in global brain lesions induced by hypoxia-ischemia (HI) insult is still unresolved.

The aim of this study was to evaluate the involvement of CB2R in the behavioural and biochemical underpinnings related to brain damage induced by HI in adult mice, and the mechanisms involved.

Our results indicate that CB2R may have a crucial neuroprotective role following HI insult through the modulation of the inflammatory-related HIF-1α/TIM-3 signalling pathway in microglia.”

https://www.ncbi.nlm.nih.gov/pubmed/28253997

Cannabinoids as gastrointestinal anti-inflammatory drugs.

Related image

“In this mini-review, we focus on the potential of the endocannabinoid system as a target for novel therapies to treat gastrointestinal (GI) inflammation. We discuss the organization of the endocannabinoid signaling and present possible pharmacological sites in the endocannabinoid system. We also refer to recent clinical findings in the field. Finally, we point at the potential use of cannabinoids at low, non-psychoactive doses to counteract non-inflammatory pathological events in the GI tract, like chemotherapy-induced diarrhea, as evidenced by Abalo et al. in the rat model.”

https://www.ncbi.nlm.nih.gov/pubmed/28239924

Cannabinoid receptor-1 blockade attenuates acute pancreatitis in obesity by an adiponectin mediated mechanism.

Image result for J Gastrointest Surg.

“Obesity is a risk factor for increased severity of acute pancreatitis.

Adipocytes produce adiponectin, an anti-inflammatory molecule that is paradoxically decreased in the setting of obesity. We have shown that adiponectin concentration inversely mirrors the severity of pancreatitis in obese mice.

Cannabinoid receptor CB-1 blockade increases circulating adiponectin concentration. We, therefore, hypothesize that blockade of CB-1 would increase adiponectin and attenuate pancreatitis severity.

Rimonabant treatment significantly increased circulating adiponectin concentration in obese mice.

In obese mice, cannabinoid receptor CB-1 blockade with rimonabant attenuates the severity of acute pancreatitis by an adiponectin-mediated mechanism.”

https://www.ncbi.nlm.nih.gov/pubmed/19225848

Cannabinoid agonist WIN55,212 in vitro inhibits interleukin-6 (IL-6) and monocyte chemo-attractant protein-1 (MCP-1) release by rat pancreatic acini and in vivo induces dual effects on the course of acute pancreatitis.

Image result for Neurogastroenterology & Motility

“Cannabinoids (CBs) evoke their effects by activating the cannabinoid receptor subtypes CB1-r and CB2-r and exert anti-inflammatory effects altering chemokine and cytokine expression. Various cytokines and chemokines are produced and released by rodent pancreatic acini in acute pancreatitis.

Although CB1-r and CB2-r expressed in rat exocrine pancreatic acinar cells do not modulate digestive enzyme release, whether they modulate inflammatory mediators remains unclear. We investigated the CB-r system role on exocrine pancreas in unstimulated conditions and during acute pancreatitis.

These findings provide new evidence showing that the pancreatic CB1-r/CB2-r system modulates pro-inflammatory factor levels in rat exocrine pancreatic acinar cells. The dual, time-dependent WIN55,212-induced changes in the development and course of acute pancreatitis support the idea that the role of the endogenous CB receptor system differs according to the local inflammatory status.”

https://www.ncbi.nlm.nih.gov/pubmed/20659297

Cannabinoid HU210 Protects Isolated Rat Stomach against Impairment Caused by Serum of Rats with Experimental Acute Pancreatitis

Image result for plos one

“Acute pancreatitis (AP), especially severe AP, is a potentially lethal inflammatory disease of pancreas which often leads to extra-pancreatic complications, even multiple systemic organ dysfunctions. It has been reported that 52% of patients with acute pancreatitis develop acute gastrointestinal mucosal lesion (AGML) or stress ulcer.

For centuries, Cannabis plant and its extracts have been used to alleviate symptoms of gastrointestinal inflammatory diseases.

It has been established that D9-tetrahydrocannabinol, the major psychoactive component of Cannabis, exerts its primary cellular actions though two G protein-coupled receptors, cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptors.

Since then, these two receptors have been recognized as the major regulators of physiological and pathological processes. Cannabinoids can reduce gastrointestinal secretion, and the activation of CB1 receptor exhibits protective role against stress-induced AGML, but the mechanisms of their action remain elusive.

The results from this study prove that the inflammatory responses and the imbalance of the gastric secretion during the development of AP are responsible for the pathogenesis of AGML, and suggest the therapeutic potential of HU210 for AGML associated with acute pancreatitis.

Therefore, our experimental results suggest a novel mechanism in the onset of AGML and new therapeutic values of cannabinoids as supplement of anti-inflammatory therapy in acute pancreatitis.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532296/

Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

Image result for scientific reports

“Acute pancreatitis is an inflammatory disease, which has several causes and symptoms and requires immediate medical attention.

The cannabinoid receptor type 2 (CB2R) is a G protein-coupled receptor that, in humans, is encoded by the CNR2 gene. CB2Rs are predominantly expressed in the periphery, especially in immune cells, suggesting that CB2R mediates the effects of cannabinoids mainly in the immune system.

Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis.

The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis.

Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis.

These results suggest that a CB2R agonist may serve as a novel therapeutic strategy to prevent and/or treat acute pancreatitis. This conclusion is consistent with previous report that a CB2R agonist exhibits a protective effect on pathogenesis in an acute pancreatitis animal model. Our data showing a reduction of intracellular Ca2+ signaling by GW also provide a new target to interpret the role of CB2R agonists in treating acute pancreatitis in addition to CB2R-mediated anti-inflammation.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949433/

Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms.

Image result for Am J Physiol Gastrointest Liver Physiol.

“The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB(1)) and 2 (CB(2)).

These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH(2)-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines.

Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases.

The unselective CB(1)/CB(2) agonist HU210 ameliorated pancreatitis in wild-type and CB(1)-/- mice, indicating that this effect is mediated by CB(2).

Furthermore, blockade of CB(2), not CB(1), with selective antagonists engraved pathology.

Stimulation with a selective CB(2) agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini.

With use of MK2-/- mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2-/- mouse model we reveal a novel CB(2)-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications.”

https://www.ncbi.nlm.nih.gov/pubmed/23139224

Anti-inflammatory role of cannabidiol and O-1602 in cerulein-induced acute pancreatitis in mice.

Image result for Pancreas journal

“The anti-inflammatory effects of O-1602 and cannabidiol (CBD), the ligands of G protein-coupled receptor 55 (GPR55), on experimental acute pancreatitis (AP) were investigated.

Cannabidiol or O-1602 treatment significantly improved the pathological changes of mice with AP and decreased the enzyme activities, IL-6 and tumor necrosis factor α; levels, and the myeloperoxidase activities in plasma and in the organ tissues.

G protein-coupled receptor 55 mRNA and protein expressed in the pancreatic tissue, and the expressions were decreased in the mice with AP, and either CBD or O-1602 attenuated these changes to a certain extent.

CONCLUSION:

Cannabidiol and O-1602 showed anti-inflammatory effects in mice with AP and improved the expression of GPR55 in the pancreatic tissue as well.”

https://www.ncbi.nlm.nih.gov/pubmed/22850623

Cannabinoids Ameliorate Pain and Reduce Disease Pathology in Cerulein-Induced Acute Pancreatitis

Image result for gastroenterology journal

“The endocannabinoid system has been identified as a major regulator of physiological and pathological processes, such as pain, inflammation, cell growth, cell death, and as a regulator of diverse gastrointestinal functions, such as intestinal motility and secretion.

Although cannabinoid-induced analgesia was initially primarily attributed to the activation of cannabinoid receptor 1 (CB1) in the nervous system, later studies demonstrated a contribution of cannabinoid receptor 2 (CB2), localized peripherally on immune cells as well as in the nervous system.

A complex interplay between endogenously released cannabinoids, such as anandamide or 2-arachidonoylglycerol, and their receptors both on inflammatory cells and neurons is involved in modulation of inflammatory pain.

In this article, we demonstrate the in vivo significance and therapeutic potential of cannabinoids in inflammation and pain associated with pancreatitis using human specimens and mouse models as test systems.

Our results are more in line with a recent study reporting a protective role for the endogenous cannabinoid system against colonic inflammation in a mouse model of experimental colitis.

Consistent with the above, we now show that acute pancreatitis, a visceral inflammatory disease in humans, is associated with an activation of the endocannabinoid system.

In humans, acute pancreatitis is associated with up-regulation of ligands as well as receptors of the endocannabinoid system in the pancreas. Furthermore, our results suggest a therapeutic potential for cannabinoids in abolishing pain associated with acute pancreatitis and in partially reducing inflammation and disease pathology in the absence of adverse side effects.

Because management of visceral inflammatory diseases should ideally include antinociceptive as well as anti-inflammatory components, our results lay a basis for testing the therapeutic value of cannabinoids as supplements to conventional analgesic therapy.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268094/