Cannabinoids Reduce Markers of Inflammation and Fibrosis in Pancreatic Stellate Cells

Image result for plos one

“While cannabinoids have been shown to ameliorate liver fibrosis, their effects in chronic pancreatitis and on pancreatic stellate cells (PSC) are unknown.

The activity of the endocannabinoid system was evaluated in human chronic pancreatitis (CP) tissues.

Augmentation of the endocannabinoid system via exogenously administered cannabinoid receptor agonists specifically induces a functionally and metabolically quiescent pancreatic stellate cell phenotype and may thus constitute an option to treat inflammation and fibrosis in chronic pancreatitis.

Because drugs for the treatment of chronic pancreatitis should ideally exert anti-fibrotic and anti-inflammatory properties, their bimodal effects rather contradict a therapeutic use of CB-receptor antagonists and promote the hypothesis that (re-)activation of the (endo-)cannabinoid system in chronic pancreatitis may be beneficial for suppressing disease progress.

In conclusion, we show that the endocannabinoid system is downregulated in chronic pancreatitis and that its augmentation via exogenously administered cannabinoids specifically reduces activation of pancreatic stellate cells.

These experiments lay a basis for testing the value of synthetic cannabinoids in the treatment of chronic pancreatitis.”

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001701

Cannabinoids and Cystic Fibrosis

Related image
“Cannabis stimulates appetite and food intake. This property has been exploited to benefit AIDS and cancer patients suffering from wasting disease, by administering the whole plant or its major active ingredient ?-tetrahydrocannabinol (THC). Endogenous cannabinoids (“endocannabinoids”) are found in maternal milk. We have recently shown that endocannabinoids are critical for milk ingestion and survival of newborns because blocking CB1 receptors resulted in death from malnutrition. Lack of appetite resulting in malnutrition is a contributing factor to mortality in many Cystic Fibrosis (CF) patients. It is proposed here for the first time, to administer THC to CF patients. It is hoped that the cannabinoid will alleviate malnutrition and thus help prevent wasting in CF patients. Recent findings suggest that a lipid imbalance (high arachidonic acid/low DHA) is a primary factor in the etiology of CF and that defective CFTR (CF transmembrane conductor regulator) that characterizes the CF condition is responsible for the dysregulation. Endocannabinoids are all fatty acid derivatives. Therefore, it is further proposed here that the CFTR gene product also modulates endocannabinoid synthesis, through regulation of fatty acid biosynthesis. According to this hypothesis, CF patients display decreased levels of endocannabinoids and by elevating these levels, symptoms may improve. Indeed, a number of physiological mechanisms of cannabinoids and endocannabinoids coincide with the pathology of CF. Thus it is suggested that potential benefits from THC treatment, in addition to appetite stimulation, will include antiemetic, bronchodilating, anti-inflammatory, anti-diarrheal and hypo-algesic effects.” https://www.researchgate.net/publication/233294071_Cannabinoids_and_Cystic_Fibrosis

“Cannabinoids and Cystic Fibrosis. A Novel Approach to Etiology and Therapy”  http://www.tandfonline.com/doi/abs/10.1300/J175v02n01_03

Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model.

Image result for neuropsychopharmacology journal

“Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required.

Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties, however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction.

CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model, did not affect total body weight gain, food or water intake, and had no effect in control animals.

In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection.

These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia.”

https://www.ncbi.nlm.nih.gov/pubmed/28230072

Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons

fx1

“Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury.

In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen–glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line.

This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance.

Cannabidiol (CBD) is a nonpsychoactive cannabinoid derived from Cannabis sativa and a weak CB1 and CB2 cannabinoid receptor antagonist, with very low toxicity for humans. It has recently been demonstrated in vivo and in vitro that CBD has a variety of therapeutic properties, exerting antidepressant, anxiolytic, anti-inflammatory, immunomodulatory, and neuroprotective effects.  Our results provide novel insight into the neuroprotective properties of CBD, which involves the regulation of the mitochondrial bioenergetics and the glucose metabolism of hippocampal neurons during OGD/R injury.

In summary, our results suggest that CBD exerts a potent neuroprotective effect against ischemia/reperfusion injury by attenuating intracellular oxidative stress, enhancing mitochondrial bioenergetics, and optimizing glucose metabolism via the pentose-phosphate pathway, thus strengthening the antioxidant defenses and preserving the energy homeostasis of neurons. More in-depth studies are required to investigate the precise mechanism underlying the success of CBD treatment and to determine the actual role of CBD in cerebral ischemia.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247568/

“Cannabidiol may soon be used in the emergency room to fight effects of stroke and cardiac emergencies” http://www.naturalnews.com/2017-02-21-cannabidiol-may-soon-be-used-in-the-emergency-room-to-fight-effects-of-stroke-cardiac-emergencies.html

Gut-brain axis: Role of lipids in the regulation of inflammation, pain and CNS diseases.

Image result for Curr Med Chem

“The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis.

This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitary-adrenal (HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disorders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alzheimer Disease etc.

Based on this background, and considering the relevance of alteration of the symbiotic state between host and microbiota, this review focuses on the role and the involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoilethanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a large group of bioactive lipids able to modulate peripheral and central pathologic processes.

It is well established their effective role in inflammation, acute and chronic pain, obesity and central nervous system diseases. It has been shown a possible correlation between these lipids and gut microbiota through different mechanisms.

Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing inflammation and pain in irritable bowel syndrome and IBD animal models.

In this review, we underline the relationship among inflammation, pain, microbiota and the different lipids, focusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in central nervous system diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/28215162

Human Cannabinoid Receptor 2 Ligand-interaction Motif: Transmembrane Helix 2 Cysteine, C2.59(89), as Determinant of Classical Cannabinoid Agonist Activity and Binding Pose.

Image result for ACS Chem Neurosci.

“Cannabinoid receptor 2 (CB2R)-dependent signaling is implicated in neuronal physiology and immune surveillance by brain microglia. Selective CB2R agonists hold therapeutic promise for inflammatory and other neurological disorders.

Information on human CB2R (hCB2R) ligand-binding and functional domains is needed to inform the rational design and optimization of candidate drug-like hCB2R agonists.

These data constitute initial evidence that TMH2 cysteine C2.59(89) is a component of the hCB2R binding pocket for classical cannabinoids.

The results further demonstrate how interactions between classical cannabinoids and specific amino acids within the hCB2R* ligand-binding domain act as determinants of agonist pharmacological properties and the architecture of the agonist-hCB2R* conformational ensemble, allowing the receptor to adopt distinct activity states, such that interaction of classical cannabinoids with TMH6 cysteine C6.47(257) favors a binding pose more advantageous for agonist potency than does their interaction with TMH2 cysteine C2.59(89).”

The Inhibitory Effect of S-777469, a Cannabinoid Type 2 Receptor Agonist, on Skin Inflammation in Mice.

Image result for pharmacology journal

“We investigated the effects of S-777469 (1-[[6-Ethyl-1-[4-fluorobenzyl]-5-methyl-2-oxo-1, 2-dihydropyridine-3-carbonyl]amino]-cyclohexanecarboxylic acid), a novel cannabinoid type 2 receptor (CB2) agonist, on 1-fluoro-2,4-dinitrobenzene (DNFB)-induced ear inflammation and mite antigen-induced dermatitis in mice. The oral administration of S-777469 significantly suppressed DNFB-induced ear swelling in a dose-dependent manner. In addition, S-777469 significantly alleviated mite antigen-induced atopic dermatitis-like skin lesions in NC/Nga mice. A histological analysis revealed that S-777469 significantly reduced the epidermal thickness and the number of mast cells infiltrating skin lesions. We demonstrated that S-777469 inhibited mite antigen-induced eosinophil accumulation in skin lesions and an endogenous CB2 ligand, 2-arachidonoylglycerol (2-AG)-induced eosinophil migration in vitro. Moreover, we confirmed that 2-AG levels significantly increased in skin lesions of mite antigen-induced dermatitis model. Together, these results suggest that S-777469 inhibits skin inflammation in mice by blocking the activities of 2-AG.”

https://www.ncbi.nlm.nih.gov/pubmed/28214870

MicroRNA-139 modulates Alzheimer’s-associated pathogenesis in SAMP8 mice by targeting cannabinoid receptor type 2.

Image result for Genetics and molecular research

“Alzheimer’s disease (AD) is a neurodegenerative disorder, and is the most common type of dementia in the elderly population. Growing evidence indicates that microRNAs (miRNAs) play a crucial role in neuroinflammation associated with AD progression. In this study, we analyzed the expression of microRNA-139 (miR-139) as well as the learning and memory function in AD. We observed that the miR-139 expression was significantly higher in the hippocampus of aged senescence accelerated mouse prone 8 (SAMP8) mice (2.92 ± 0.13) than in the control mice (1.49 ± 0.08). Likewise, the overexpression of miR-139 by means of hippocampal injection impaired the hippocampus-dependent learning and memory formation. In contrast, the downregulation of miR-139 in mice improved learning and memory function in the mice. The level of cannabinoid receptor type 2 (CB2), a potential target gene of miR-139, was inversely correlated with the miR-139 expression in primary hippocampal cells. Furthermore, we demonstrated that miR-139 inversely modulated the responses to proinflammatory stimuli. Together, our findings demonstrate that miR-139 exerts a pathogenic effect in AD by modulating CB2-meditated neuroinflammatory processes.”

https://www.ncbi.nlm.nih.gov/pubmed/28218780

In vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer’s Disease.

Image result for Front Pharmacol.

“Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that is affecting an increasing number of people. It is characterized by the accumulation of amyloid-β and tau hyperphosphorylation as well as neuroinflammation and oxidative stress.

Current AD treatments do not stop or reverse the disease progression, highlighting the need for new, more effective therapeutics.

Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has demonstrated neuroprotective, anti-inflammatory and antioxidant properties in vitro. Thus, it is investigated as a potential multifunctional treatment option for AD.

Here, we summarize the current status quo of in vivo effects of CBD in established pharmacological and transgenic animal models for AD.

The studies demonstrate the ability of CBD to reduce reactive gliosis and the neuroinflammatory response as well as to promote neurogenesis.

Importantly, CBD also reverses and prevents the development of cognitive deficits in AD rodent models.

Interestingly, combination therapies of CBD and Δ9-tetrahydrocannabinol (THC), the main active ingredient of cannabis sativa, show that CBD can antagonize the psychoactive effects associated with THC and possibly mediate greater therapeutic benefits than either phytocannabinoid alone.

The studies provide “proof of principle” that CBD and possibly CBD-THC combinations are valid candidates for novel AD therapies.” https://www.ncbi.nlm.nih.gov/pubmed/28217094

“It is unlikely that any drug acting on a single pathway or target will mitigate the complex pathoetiological cascade leading to AD. Therefore, a multifunctional drug approach targeting a number of AD pathologies simultaneously will provide better, wider-ranging benefits than current therapeutic approaches. Importantly, the endocannabinoid system has recently gained attention in AD research as it is associated with regulating a variety of processes related to AD, including oxidative stress, glial cell activation and clearance of macromolecules. The phytocannabinoid cannabidiol (CBD) is a prime candidate for this new treatment strategy. CBD has been found in vitro to be neuroprotective, to prevent hippocampal and cortical neurodegeneration, to have anti-inflammatory and antioxidant properties, reduce tau hyperphosphorylation and to regulate microglial cell migration. Furthermore, CBD was shown to protect against Aβ mediated neurotoxicity and microglial-activated neurotoxicity, to reduce Aβ production by inducing APP ubiquination and to improve cell viability,. These properties suggest that CBD is perfectly placed to treat a number of pathologies typically found in AD. The studies provide “proof of principle” that CBD and possibly CBD-THC combinations are valid candidates for novel AD therapies.” http://journal.frontiersin.org/article/10.3389/fphar.2017.00020/full

Implication of cannabinoids in neurological diseases.

Image result for Cellular and Molecular Neurobiology

“1. Preparations from Cannabis sativa (marijuana) have been used for many centuries both medicinally and recreationally. 2. Recent advances in the knowledge of its pharmacological and chemical properties in the organism, mainly due to Delta(9)-tetrahydrocannabinol, and the physiological roles played by the endocannabinoids have opened up new strategies in the treatment of neurological and psychiatric diseases. 3. Potential therapeutic uses of cannabinoid receptor agonists include the management of spasticity and tremor in multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, cancer, and vasodilation that accompanies advanced cirrhosis. CB(1) receptor antagonists have therapeutic potential in Parkinson’s disease. 4. Dr. Julius Axelrod also contributed in studies on the neuroprotective actions of cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/16699878

“Medical marijuana: emerging applications for the management of neurologic disorders.” https://www.ncbi.nlm.nih.gov/pubmed/15458761