Gingival Stromal Cells as an In Vitro Model: Cannabidiol Modulates Genes Linked with Amyotrophic Lateral Sclerosis.

Image result for J Cell Biochem.

“Research in recent years has extensively investigated the therapeutic efficacy of mesenchymal stromal cells in regenerative medicine for many neurodegenerative diseases at preclinical and clinical stages.

However, the success rate of stem cell therapy remains less at translational phase. Lack of relevant animal models that potentially simulate the molecular etiology of human pathological symptoms might be a reason behind such poor clinical outcomes associated with stem cell therapy.

Apparently, self-renewal and differentiation ability of mesenchymal stem cells may help to study the early developmental signaling pathways connected with the diseases, such as Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS), etc., at in vitro level.

Cannabidiol, a non-psychotrophic cannabinoid, has been demonstrated as a potent anti-inflammatory and neuroprotective agent in neurological preclinical models.

In the present study, we investigated the modulatory role of cannabidiol on genes associated with ALS using human gingiva-derived mesenchymal stromal cells (hGMSCs) as an in vitro model system.

Next generation transcriptomic sequencing analysis demonstrated considerable modifications in the expression of genes connected with ALS pathology, oxidative stress, mitochondrial dysfunction, and excitotoxicity in hGMSCs treated with cannabidiol.

Our results suggest the efficacy of cannabidiol to delineate the unknown molecular pathways, which may underlie ALS pathology at early stage using hGMSCs as a compelling in vitro system.”

https://www.ncbi.nlm.nih.gov/pubmed/27714895

Vascular Dysfunction in a Transgenic Model of Alzheimer’s Disease: Effects of CB1R and CB2R Cannabinoid Agonists.

Image result for Front Neurosci.

“There is evidence of altered vascular function, including cerebrovascular, in Alzheimer’s disease (AD) and transgenic models of the disease.

Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears to be responsible, at least in part, of alterations in vascular function.

Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro.

We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation.

In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring.

In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice.

Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology.”

Turning Down the Thermostat: Modulating the Endocannabinoid System in Ocular Inflammation and Pain.

Image result for Frontiers in Pharmacology

“The endocannabinoid system (ECS) has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues.

The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states.

Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited.

Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time.

This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis.

Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s), together with their potential application for the treatment of ocular inflammation and pain.”

https://www.ncbi.nlm.nih.gov/pubmed/27695415

Anandamide Suppresses Proinflammatory T Cell Responses In Vitro through Type-1 Cannabinoid Receptor-Mediated mTOR Inhibition in Human Keratinocytes.

Image result for The Journal of Immunology

“The endocannabinoid system comprises cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol, and metabolic enzymes of these ligands.

The endocannabinoid system has recently been implicated in the regulation of various pathophysiological processes of the skin that include immune competence and/or tolerance of keratinocytes, the disruption of which might promote the development of skin diseases.

Recent evidence showed that CB1 in keratinocytes limits the secretion of proinflammatory chemokines, suggesting that this receptor might also regulate T cell dependent inflammatory diseases of the skin.

In this article, we sought to investigate the cytokine profile of IFN-γ-activated keratinocytes, and found that CB1 activation by AEA suppressed production and release of signature TH1- and TH17-polarizing cytokines, IL-12 and IL-23, respectively. We also set up cocultures between a conditioned medium of treated keratinocytes and naive T cells to disclose the molecular details that regulate the activation of highly proinflammatory TH1 and TH17 cells.

AEA-treated keratinocytes showed reduced an induction of IFN-γ-producing TH1 and IL-17-producing TH17 cells, and these effects were reverted by pharmacological inhibition of CB1.

Further analyses identified mammalian target of rapamycin as a proinflammatory signaling pathway regulated by CB1, able to promote either IL-12 and IL-23 release from keratinocytes or TH1 and TH17 polarization.

Taken together, these findings demonstrate that AEA suppresses highly pathogenic T cell subsets through CB1-mediated mammalian target of rapamycin inhibition in human keratinocytes.

Thus, it can be speculated that the latter pathway might be beneficial to the physiological function of the skin, and can be targeted toward inflammation-related skin diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/27694494

Cannabidiol: a potential treatment for post Ebola Syndrome?

Image result for international journal of infectious diseases

“Patients recovered from Ebola virus infection may experience short- and long-term physical, neuropsychological and social sequelae, including arthralgia, musculoskeletal pain, ophthalmic inflammation, auditory problems, fatigue, confusion, insomnia, short-term memory impairment, anxiety, depression and anorexia, all lasting from 2 weeks to more than 2 years.

Currently there are no treatments for post Ebola sequelae.

We hypothesize that cannabidiol (CBD) may attenuate some of these post Ebola sequelae, several of which have been postulated to result from inflammation and/or an autoimmune response.

CBD has anti-inflammatory actions in various animal models.

Clinical studies have shown that oral administration of CBD, compared to placebo, significantly reduces anxiety, has antinociceptive and anticonvulsant actions, and may be therapeutic for insomnia.

Overall, CBD has a number of pharmacological effects that may significantly improve the mental and somatic health of patients suffering from post Ebola sequelae.

In humans, CBD, at therapeutic doses, does not: 1) elicit dependence or tolerance; 2) significantly alter heart rate or blood pressure; 3) affect gastrointestinal transit; 4) produce significant cognitive or psychomotor impairments. Mild sedation and nausea are the most commonly reported adverse effects associated with CBD.

CBD, based on its pharmacological effects and favorable safety profile, should be considered as a treatment for individuals with post Ebola sequelae.”

https://www.ncbi.nlm.nih.gov/pubmed/27686726

Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders.

Image result for Front Neurosci.

“Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson’s disease, Huntington’s chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.”

Medical Marijuana: Just the Beginning of a Long, Strange Trip?

Physical Therapy Journal

“Medical marijuana continues to gain acceptance and become legalized in many states. Various species of the marijuana plant have been cultivated, and this plant can contain up to 100 active compounds known as cannabinoids.

Two cannabinoids seem the most clinically relevant: Δ9-tetrahydrocannabinol (THC), which tends to produce the psychotropic effects commonly associated with marijuana, and cannabidiol (CBD), which may produce therapeutic effects without appreciable psychoactive properties.

Smoking marijuana, or ingesting extracts from the whole plant orally (in baked goods, teas, and so forth), introduces variable amounts of THC, CBD, and other minor cannabinoids into the systemic circulation where they ultimately reach the central and peripheral nervous systems.

Alternatively, products containing THC, CBD, or a combination of both compounds, can also be ingested as oral tablets, or via sprays applied to the oral mucosal membranes. These products may provide a more predictable method for delivering a known amount of specific cannabinoids into the body.

Although there is still a need for randomized controlled clinical trials, preliminary studies have suggested that medical marijuana and related cannabinoids may be beneficial in treating chronic pain, inflammation, spasticity, and other conditions seen commonly in physical therapist practice.

Physical therapists should therefore be aware of the options that are available for patients considering medical marijuana, and be ready to provide information for these patients.”

http://www.ncbi.nlm.nih.gov/pubmed/27660328

Δ9-Tetrahydrocannabinol Reverses TNFα-induced Increase in Airway Epithelial Cell Permeability through CB2 Receptors.

Image result for Biochem Pharmacol

“Despite pharmacological treatment, bronchial hyperresponsiveness continues to deteriorate as airway remodelling persists in airway inflammation.

Previous studies have demonstrated that the phytocannabinoid Δ9-tetrahydrocannabinol (THC) reverses bronchoconstriction with an anti-inflammatory action.

The aim of this study was to investigate the effects of THC on bronchial epithelial cell permeability after exposure to the pro-inflammatory cytokine, TNFα. Calu-3 bronchial epithelial cells were cultured at air-liquid interface.

These data indicate that THC prevents cytokine-induced increase in airway epithelial permeability through CB2 receptor activation.

This highlights that THC, or other cannabinoid receptor ligands, could be beneficial in the prevention of inflammation-induced changes in airway epithelial cell permeability, an important feature of airways diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27641813

pain in Extrapyramidal Neurodegenerative Diseases.

Image result for Clin J Pain.

“Pain is one of the most common non-motor symptoms of Parkinson disease (PD) and other Parkinson plus syndromes, with a major effect on quality of life.

The aims of the study were to examine the prevalence and characteristics of pain in PD and other Parkinson plus syndromes and patient use and response to pain medications.

The most beneficial analgesics were nonsteroidal anti-inflammatory drugs and medical cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/27623111

Activation of Cannabinoid Receptor Type II by AM1241 Ameliorates Myocardial Fibrosis via Nrf2-Mediated Inhibition of TGF-β1/Smad3 Pathway in Myocardial Infarction Mice.

Image result for Cell Physiol Biochem

“Myocardial interstitial fibrosis is a major histologic landmark resulting in cardiac dysfunction after myocardial infarction (MI).

Activation of cannabinoid receptor type II (CB2 receptor) have been demonstrated to reduce fibrosis in hepatic cirrhotic rat.

In this study, we aimed to investigate the effects of a CB2 receptor selective agonist AM1241 on myocardial fibrosis post MI in mice.

CONCLUSION:

CB2 receptor agonist AM1241 alleviated myocardial interstitial fibrosis via Nrf2 -mediated down-regulation of TGF-β1/Smad3 pathway, which suggested that CB2 receptor activation might represent a promising target for retarding cardiac fibrosis after MI.”

http://www.ncbi.nlm.nih.gov/pubmed/27614871